Suppr超能文献

基于计算机模拟筛选非竞争性肽抑制剂。

In silico panning for a non-competitive peptide inhibitor.

作者信息

Yagi Yukiko, Terada Kotaro, Noma Takahisa, Ikebukuro Kazunori, Sode Koji

机构信息

Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-13 Naka-machi, Koganei, Tokyo, Japan.

出版信息

BMC Bioinformatics. 2007 Jan 12;8:11. doi: 10.1186/1471-2105-8-11.

Abstract

BACKGROUND

Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs). In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH).

RESULTS

The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs), which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 microM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD) value was calculated as 60 microM by surface plasmon resonance (SPR) analysis.

CONCLUSION

We demonstrate an effective methodology of in silico panning for the selection of a non-competitive peptide inhibitor from small virtual peptide library. This study is the first to demonstrate the usefulness of in silico evolution using experimental data. Our study highlights the usefulness of this strategy for structure-based screening of enzyme inhibitors.

摘要

背景

肽配体作为有效的药物具有巨大的治疗潜力。目前,市场上有40多种肽类药物。然而,由于昂贵且耗时的合成程序对高通量筛选来说是个问题,因此需要新的程序来减少筛选肽配体所涉及的时间和工作量。我们提出了“计算机虚拟筛选”的新方法,该方法包括两阶段筛选,即通过对接模拟进行亲和力选择以及使用遗传算法(GA)对肽配体进行进化。计算机虚拟筛选已成功应用于水溶性醌蛋白葡萄糖脱氢酶(PQQGDH)肽抑制剂的筛选。

结果

通过将对接模拟与使用遗传算法(GA)对肽配体进行进化相结合,实现了针对目标酶的肽配体的进化,该算法模拟了达尔文进化。在对接模拟中将目标区域指定为酶的底物结合位点旁边,从而能够选择非竞争性抑制剂。总共在计算机上进行了四轮选择;每一代对接能量的分布逐渐降低,并且在四轮选择中观察到对接能量有所改善。对接能量最低的前三个所选肽之一“SERG”显示出抑制作用,Ki值为20μM。在存在该肽的情况下,就Vmax值而言,PQQGDH活性比野生型酶低3倍。SERG对该酶的阻断机制被确定为非竞争性抑制。我们证实了该肽的特异性结合,并通过表面等离子体共振(SPR)分析计算出其平衡解离常数(KD)值为60μM。

结论

我们展示了一种从小型虚拟肽库中筛选非竞争性肽抑制剂的有效计算机虚拟筛选方法。本研究首次证明了使用实验数据进行计算机虚拟进化的有用性。我们的研究突出了该策略在基于结构的酶抑制剂筛选中的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57a1/1781467/8d361bd382d1/1471-2105-8-11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验