Uehara Tomoya, Koike Miho, Nakata Hideo, Hanaoka Hiroshi, Iida Yasuhiko, Hashimoto Kazuyuki, Akizawa Hiromichi, Endo Keigo, Arano Yasushi
Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
Bioconjug Chem. 2007 Jan-Feb;18(1):190-8. doi: 10.1021/bc0602329.
Renal localization of radiolabeled antibody fragments constitutes a problem in targeted imaging and radiotherapy. We have reported that Fab fragments labeled with 3'-[131I]iodohippuryl Nepsilon-maleoyl-lysine (HML) showed markedly low renal radioactivity levels even shortly after injection, due to a rapid and selective release of m-[131I]iodohippuric acid by the action of brush border enzymes. To estimate the applicability of the molecular design to metallic radionuclides, [188Re]tricarbonyl(cyclopentadienylcarbonate)rhenium ([188Re]CpTR-COOH) was conjugated with Nepsilon-tert-butoxycarbonyl-glycyl-lysine or Nepsilon-maleoyl-glycyl-lysine to prepare [188Re]CpTR-GK-Boc or [188Re]CpTR-GK. The cleavage of the glycyl-lysine linkage of the two compounds generates a glycine conjugate of [188Re]CpTR-COOH ([188Re]CpTR-Gly), which possesses in vivo behaviors similar to those of m-iodohippuric acid. The hydrolysis rate of the peptide bond in [188Re]CpTR-GK-Boc was compared with that in 3'-[125I]iodohippuryl Nepsilon-Boc-lysine ([125I]HL-Boc) using brush border membrane vesicles (BBMVs) prepared from rat kidneys. [188Re]CpTR-GK was conjugated to thiolated Fab fragments to prepare [188Re]CpTR-GK-Fab. The biodistribution of radioactivity after injection of [188Re]CpTR-GK-Fab was compared with that of [125I]HML-Fab and [188Re]CpTR-Fab prepared by conjugating N-hydroxysuccinimidyl ester of [188Re]CpTR-COOH with antibody fragments. While [188Re]CpTR-GK-Boc liberated [188Re]CpTR-Gly in BBMVs, [125I]HL-Boc liberated m-[125I]iodohippuric acid at a much faster rate. In addition, although [125I]HL-Boc was hydrolyzed by both metalloenzymes and nonmetalloenzymes, metalloenzymes were responsible for the cleavage of the peptide linkage in [188Re]CpTR-GK-Boc. In biodistribution studies, [188Re]CpTR-GK-Fab exhibited significantly lower renal radioactivity levels than did [188Re]CpTR-Fab. However, the renal radioactivity levels of [188Re]CpTR-GK-Fab were slightly higher than those of [125I]HML-Fab. The analysis of urine samples collected for 6 h postinjection of [188Re]CpTR-GK-Fab showed that [188Re]CpTR-Gly was the major radiometabolite. In tumor-bearing mice, [188Re]CpTR-GK-Fab significantly reduced renal radioactivity levels without impairing the radioactivity levels in tumor. These findings indicate that the molecular design of HML can be applied to metallic radionuclides by using a radiometal chelate of high inertness and by designing a radiometabolite of high urinary excretion when released from antibody fragments following cleavage of a glycyl-lysine linkage. This study also indicates that a change in chemical structure of a radiolabel attached to a glycyl-lysine linkage significantly affected enzymes involved in the hydrolysis reaction. Since there are many kinds of enzymes that cleave a variety of peptide linkages on the renal brush border membrane, selection of a peptide linkage optimal to a radiometal chelate of interest may provide radiolabeled antibody fragments that exhibit renal radioactivity levels similar to those of [131I]HML-labeled ones. The in vitro system using BBMVs might be useful for selecting an appropriate peptide linkage.
放射性标记抗体片段在肾脏的定位是靶向成像和放射治疗中的一个问题。我们曾报道,用3'-[¹³¹I]碘马尿酸Nε-马来酰赖氨酸(HML)标记的Fab片段即使在注射后不久肾脏放射性水平也显著较低,这是由于刷状缘酶的作用使间位[¹³¹I]碘马尿酸快速且选择性地释放。为评估该分子设计对金属放射性核素的适用性,将[¹⁸⁸Re]三羰基(环戊二烯碳酸酯)铼([¹⁸⁸Re]CpTR-COOH)与Nε-叔丁氧羰基-甘氨酰赖氨酸或Nε-马来酰-甘氨酰赖氨酸偶联,制备[¹⁸⁸Re]CpTR-GK-Boc或[¹⁸⁸Re]CpTR-GK。这两种化合物的甘氨酰-赖氨酸键断裂会生成[¹⁸⁸Re]CpTR-COOH的甘氨酸共轭物([¹⁸⁸Re]CpTR-Gly),其体内行为与间碘马尿酸相似。使用从大鼠肾脏制备的刷状缘膜囊泡(BBMVs),比较了[¹⁸⁸Re]CpTR-GK-Boc中肽键的水解速率与3'-[¹²⁵I]碘马尿酸Nε-Boc-赖氨酸([¹²⁵I]HL-Boc)中肽键的水解速率。[¹⁸⁸Re]CpTR-GK与巯基化Fab片段偶联制备[¹⁸⁸Re]CpTR-GK-Fab。将[¹⁸⁸Re]CpTR-GK-Fab注射后的放射性生物分布与[¹²⁵I]HML-Fab以及通过将[¹⁸⁸Re]CpTR-COOH的N-羟基琥珀酰亚胺酯与抗体片段偶联制备的[¹⁸⁸Re]CpTR-Fab的放射性生物分布进行比较。虽然[¹⁸⁸Re]CpTR-GK-Boc在BBMVs中释放出[¹⁸⁸Re]CpTR-Gly,但[¹²⁵I]HL-Boc以快得多的速率释放间位[¹²⁵I]碘马尿酸。此外,虽然[¹²⁵I]HL-Boc被金属酶和非金属酶水解,但金属酶负责[¹⁸⁸Re]CpTR-GK-Boc中肽键的断裂。在生物分布研究中,[¹⁸⁸Re]CpTR-GK-Fab的肾脏放射性水平显著低于[¹⁸⁸Re]CpTR-Fab。然而,[¹⁸⁸Re]CpTR-GK-Fab的肾脏放射性水平略高于[¹²⁵I]HML-Fab。对注射[¹⁸⁸Re]CpTR-GK-Fab后6小时收集的尿液样本分析表明,[¹⁸⁸Re]CpTR-Gly是主要的放射性代谢物。在荷瘤小鼠中,[¹⁸⁸Re]CpTR-GK-Fab显著降低了肾脏放射性水平,而不影响肿瘤中的放射性水平。这些发现表明,通过使用高惰性的放射性金属螯合物,并在甘氨酰-赖氨酸键断裂后从抗体片段释放时设计高尿排泄的放射性代谢物,HML的分子设计可应用于金属放射性核素。本研究还表明,连接在甘氨酰-赖氨酸键上的放射性标记化学结构的改变显著影响参与水解反应的酶。由于在肾脏刷状缘膜上有多种酶可切割各种肽键,选择对感兴趣的放射性金属螯合物最优的肽键可能会提供肾脏放射性水平与[¹³¹I]HML标记的抗体片段相似的放射性标记抗体片段。使用BBMVs的体外系统可能有助于选择合适的肽键。