Belloto Emmanuelle, Diraison Frédérique, Basset Alexandra, Allain Gwenola, Abdallah Pauline, Beylot Michel
1Institut National de la Santé et de la Recherche Médicale U499, Faculté Réne Theodore Hyacinthe, Laennec, France.
Am J Physiol Endocrinol Metab. 2007 May;292(5):E1340-7. doi: 10.1152/ajpendo.00488.2006. Epub 2007 Jan 16.
H(2)O administration has recently been proposed as a simple and convenient method to measure protein synthesis rates. (2)H(2)O administration results in deuterium labeling of free amino acids such as alanine, and incorporation into proteins of labeled alanine can then be used to measure protein synthesis rates. We examined first whether during (2)H(2)O administration plasma free alanine enrichment is a correct estimate of the enrichment in the tissue amino acid pools used for protein synthesis. We found that, after (2)H(2)O administration, deuterium labeling in plasma free alanine equilibrated rapidly with body water, and stable enrichment values were obtained within 20 min. Importantly, oral administration of (2)H(2)O induced no difference of labeling between portal and peripheral circulation except for the initial 10 min after a loading dose. The kinetics of free alanine labeling were comparable in various tissues (liver, skeletal muscle, heart) and in plasma with identical plateau values. We show next that increased glycolytic rate or absorption of unlabeled amino acids from ingested meals do not modify alanine labeling. Calculated synthesis rates of mixed proteins were much higher (20- to 70-fold) in plasma and liver than in muscle and heart. Last, comparable replacement rates of apoB100-VLDL were obtained in humans by using the kinetics of incorporation into apoB100 of infused labeled leucine or of alanine labeled by (2)H(2)O administration. All of these results support (2)H(2)O as a safe, reliable, useful, and convenient tracer for studies of protein synthesis, including proteins with slow turnover rate.
最近有人提出,给予重水(H₂O)是一种简单便捷的测量蛋白质合成速率的方法。给予重水会使游离氨基酸(如丙氨酸)发生氘标记,然后将标记的丙氨酸掺入蛋白质中,便可用于测量蛋白质合成速率。我们首先研究了在给予重水期间,血浆游离丙氨酸的富集情况是否能正确估计用于蛋白质合成的组织氨基酸池中的富集情况。我们发现,给予重水后,血浆游离丙氨酸中的氘标记与体内水分迅速达到平衡,20分钟内即可获得稳定的富集值。重要的是,口服重水除了在负荷剂量后的最初10分钟外,在门静脉和外周循环之间未引起标记差异。游离丙氨酸标记的动力学在各种组织(肝脏、骨骼肌、心脏)和血浆中具有可比性,且平台值相同。接下来我们表明,糖酵解速率增加或从摄入食物中吸收未标记的氨基酸不会改变丙氨酸标记。血浆和肝脏中混合蛋白质的计算合成速率比肌肉和心脏中的高得多(20至70倍)。最后,通过使用注入的标记亮氨酸或给予重水标记的丙氨酸掺入载脂蛋白B100的动力学,在人类中获得了可比的载脂蛋白B100-极低密度脂蛋白替换率。所有这些结果都支持重水作为一种安全、可靠、有用且便捷的示踪剂,用于蛋白质合成研究,包括周转缓慢的蛋白质。