Suppr超能文献

泊松比对应变弹性成像正问题和逆问题的影响。

Influence of Poisson's ratio on elastographic direct and inverse problems.

作者信息

Fehrenbach J

机构信息

Laboratoire MIP, Université Paul Sabatier, 31062 Toulouse Cedex 09, France.

出版信息

Phys Med Biol. 2007 Feb 7;52(3):707-16. doi: 10.1088/0031-9155/52/3/012. Epub 2007 Jan 12.

Abstract

We consider the displacement of an elastic material under an external compression (axial or almost axial stress). We assume that only one component of the displacement is observed, in the direction of compression (axial displacement), or alternatively, that two components are observed in a plane. These hypotheses are in accordance with an imaging modality, namely ultrasonic elastography. In the case of a homogeneous medium we show that any value of Poisson's ratio allows us to predict the observed value of the axial displacement. When two components of the displacement are measured in a plane, the Poisson's ratio of the plane strain model that predicts the observed displacement is not the same as the tri-dimensional material. These facts are illustrated by numerical experiments in the case of an inhomogeneous medium. We also present results on experimental phantom data, where the inverse problem of reconstructing the Young's modulus is solved assuming different values for Poisson's ratio.

摘要

我们考虑弹性材料在外部压缩(轴向或近似轴向应力)下的位移。我们假设仅观察到位移的一个分量,即沿压缩方向(轴向位移),或者观察到平面内的两个分量。这些假设与一种成像方式,即超声弹性成像相一致。在均匀介质的情况下,我们表明泊松比的任何值都能让我们预测轴向位移的观测值。当在平面内测量位移的两个分量时,预测观测位移的平面应变模型的泊松比与三维材料的泊松比不同。在非均匀介质的情况下,这些事实通过数值实验得到了说明。我们还展示了关于实验体模数据的结果,其中在假设泊松比取不同值的情况下解决了重建杨氏模量的反问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验