Dehaene S, Cohen L
INSERM & CNRS Laboratoire de Sciences Cognitives et Psycholinguistique, Paris, France.
Neuropsychologia. 1991;29(11):1045-54. doi: 10.1016/0028-3932(91)90076-k.
We report the case of an aphasic and acalculic patient with selective preservation of approximation abilities. The patient's deficit was so severe that he judged 2 + 2 = 5 to be correct, illustrating a radical impairment in exact calculation. However, he easily rejected grossly false additions such as 2 + 2 = 9, therefore demonstrating a preserved knowledge of the approximate result. The dissociation between impaired exact processing and preserved approximation was identified in several numerical tasks: solving and verifying arithmetical operations, number reading, short-term memory, number comparison, parity judgement, and number knowledge. We suggest the existence of two distinct number-processing routes in the normal subject. One route permits exact number representation, memory and calculation using symbolic notation. The other route allows for approximate computations using an analog representation of quantities.
我们报告了一例失语和失算患者,其近似能力选择性保留。该患者的缺陷非常严重,以至于他认为2 + 2 = 5是正确的,这表明精确计算存在根本性损害。然而,他很容易拒绝诸如2 + 2 = 9这样明显错误的加法,因此表明对近似结果的认知得以保留。在几个数字任务中发现了精确处理受损与近似能力保留之间的分离:解决和验证算术运算、数字阅读、短期记忆、数字比较、奇偶判断和数字知识。我们认为正常受试者存在两条不同的数字处理途径。一条途径允许使用符号表示法进行精确数字表征、记忆和计算。另一条途径允许使用数量的模拟表示法进行近似计算。