Suppr超能文献

双杂合质体家族中线粒体DNA重组体的遗传:对系统发育分析的潜在影响。

Inheritance of mitochondrial DNA recombinants in double-heteroplasmic families: potential implications for phylogenetic analysis.

作者信息

Zsurka Gábor, Hampel Kevin G, Kudina Tatiana, Kornblum Cornelia, Kraytsberg Yevgenia, Elger Christian E, Khrapko Konstantin, Kunz Wolfram S

机构信息

Department of Epileptology, University Bonn Medical Center, Bonn, Germany.

出版信息

Am J Hum Genet. 2007 Feb;80(2):298-305. doi: 10.1086/511282. Epub 2006 Dec 27.

Abstract

Recently, somatic recombination of human mitochondrial DNA (mtDNA) was discovered in skeletal muscle. To determine whether recombinant mtDNA molecules can be transmitted through the germ line, we investigated two families, each harboring two inherited heteroplasmic mtDNA mutations. Using allele-specific polymerase chain reaction and single-cell and single-molecule mutational analyses, we discovered, in both families, all four possible allelic combinations of the two heteroplasmic mutations (tetraplasmy), the hallmark of mtDNA recombination. We strongly suggest that these recombinant mtDNA molecules were inherited rather than de novo generated somatically, because they (1) are highly abundant and (2) are present in different tissues of maternally related family members, including young individuals. Moreover, the comparison of the complete mtDNA sequence of one of the families with database sequences revealed an irregular, nontreelike pattern of mutations, reminiscent of a reticulation. We therefore propose that certain reticulations of the human mtDNA phylogenetic tree might be explained by recombination of coexisting mtDNA molecules harboring multiple mutations.

摘要

最近,在骨骼肌中发现了人类线粒体DNA(mtDNA)的体细胞重组现象。为了确定重组mtDNA分子是否能够通过种系传递,我们对两个家族进行了研究,每个家族都携带两种遗传性异质性mtDNA突变。通过等位基因特异性聚合酶链反应以及单细胞和单分子突变分析,我们在两个家族中均发现了两种异质性突变的所有四种可能的等位基因组合(四重质体),这是mtDNA重组的标志。我们强烈认为,这些重组mtDNA分子是遗传而来的,而非体细胞中新产生的,因为它们(1)高度丰富,并且(2)存在于母系相关家族成员的不同组织中,包括年轻人。此外,将其中一个家族的完整mtDNA序列与数据库序列进行比较,发现了不规则的、非树状的突变模式,类似于网状结构。因此,我们提出,人类mtDNA系统发育树的某些网状结构可能是由携带多种突变的共存mtDNA分子的重组所解释的。

相似文献

3
The A to G transition at nt 3243 of the mitochondrial tRNALeu(UUR) may cause an MERRF syndrome.
J Neurol Neurosurg Psychiatry. 1996 Jul;61(1):47-51. doi: 10.1136/jnnp.61.1.47.
5
Detection of known base substitution mutations in human mitochondrial DNA of MERRF and MELAS by biochip technology.
Biosens Bioelectron. 2009 Apr 15;24(8):2371-6. doi: 10.1016/j.bios.2008.12.008. Epub 2008 Dec 9.
6
A novel point mutation in the mitochondrial tRNA(Ser(UCN)) gene detected in a family with MERRF/MELAS overlap syndrome.
Biochem Biophys Res Commun. 1995 Sep 5;214(1):86-93. doi: 10.1006/bbrc.1995.2260.
7
Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases.
Exp Mol Med. 2010 Jun 30;42(6):446-55. doi: 10.3858/emm.2010.42.6.046.

引用本文的文献

1
Linear DNA-driven recombination in mammalian mitochondria.
Nucleic Acids Res. 2024 Apr 12;52(6):3088-3105. doi: 10.1093/nar/gkae040.
2
Presence and transmission of mitochondrial heteroplasmic mutations in human populations of European and African ancestry.
Mitochondrion. 2021 Sep;60:33-42. doi: 10.1016/j.mito.2021.07.004. Epub 2021 Jul 21.
3
What can a comparative genomics approach tell us about the pathogenicity of mtDNA mutations in human populations?
Evol Appl. 2019 Aug 27;12(10):1912-1930. doi: 10.1111/eva.12851. eCollection 2019 Dec.
4
A wide range of 3243A>G/tRNALeu(UUR) (MELAS) mutation loads may segregate in offspring through the female germline bottleneck.
PLoS One. 2014 May 7;9(5):e96663. doi: 10.1371/journal.pone.0096663. eCollection 2014.
5
No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline.
Nucleic Acids Res. 2014 Jan;42(2):1111-6. doi: 10.1093/nar/gkt969. Epub 2013 Oct 25.
6
How good are indirect tests at detecting recombination in human mtDNA?
G3 (Bethesda). 2013 Jul 8;3(7):1095-104. doi: 10.1534/g3.113.006510.
7
Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans.
BMC Evol Biol. 2010 Sep 2;10:270. doi: 10.1186/1471-2148-10-270.
8
Heteroduplex joint formation free of net topological change by Mhr1, a mitochondrial recombinase.
J Biol Chem. 2009 Apr 3;284(14):9341-53. doi: 10.1074/jbc.M900023200. Epub 2009 Feb 3.
9
Mitochondrial diversity within modern human populations.
Nucleic Acids Res. 2007;35(9):3039-45. doi: 10.1093/nar/gkm207. Epub 2007 Apr 16.

本文引用的文献

2
mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D749-51. doi: 10.1093/nar/gkj010.
3
Mutation hot spots in mammalian mitochondrial DNA.
Genome Res. 2006 Feb;16(2):215-22. doi: 10.1101/gr.4305906. Epub 2005 Dec 14.
4
Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations.
Expert Rev Mol Diagn. 2005 Sep;5(5):809-15. doi: 10.1586/14737159.5.5.809.
5
Mitochondrial DNA and human evolution.
Annu Rev Genomics Hum Genet. 2005;6:165-83. doi: 10.1146/annurev.genom.6.080604.162249.
7
GenBank.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8. doi: 10.1093/nar/gki063.
8
Co-segregation and heteroplasmy of two coding-region mtDNA mutations within a matrilineal pedigree.
Hum Genet. 2005 Jan;116(1-2):28-32. doi: 10.1007/s00439-004-1203-x. Epub 2004 Nov 3.
10
Recombination of human mitochondrial DNA.
Science. 2004 May 14;304(5673):981. doi: 10.1126/science.1096342.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验