Bouzin Caroline, Brouet Agnès, De Vriese Joelle, Dewever Julie, Feron Olivier
Université Catholique de Louvain Medical School, Unit of Pharmacology and Therapeutics, Brussels, Belgium.
J Immunol. 2007 Feb 1;178(3):1505-11. doi: 10.4049/jimmunol.178.3.1505.
Tumors may evade immune responses at multiple levels, including through a defect in the lymphocyte-vessel wall interactions. The angiogenic nature of endothelial cells (EC) lining tumor blood vessels may account for such anergy. In this study, we examined whether mechanisms other than down-regulation of adhesion molecules could be involved, particularly signaling pathways dependent on the caveolae platforms. To mimic the influence of the tumor microenvironment, EC were exposed to TNF-alpha and the proangiogenic vascular endothelial growth factor (VEGF). We identified a dramatic inhibition of lymphocyte adhesion on activated EC following either short or long VEGF pretreatments. We further documented that VEGF did not influence the abundance of major adhesion molecules, but was associated with a defect in ICAM-1 and VCAM-1 clustering at the EC surface. We also found that overexpression of the caveolar structural protein, caveolin-1, overcame the VEGF-mediated inhibition of adhesion and restored ICAM-1 clustering. Conversely, EC transduction with a caveolin-1 small interfering RNA reduced the TNF-alpha-dependent increase in adhesion. Finally, we identified VEGF-induced NO production by the endothelial NO synthase as the main target of the changes in caveolin-1 abundance. We found that the NO synthase inhibitor N-nitro-l-arginine methyl ester could reverse the inhibitory effects of VEGF on lymphocyte adhesion and EC cytoskeleton rearrangement. Symmetrically, a NO donor was shown to prevent the ICAM clustering-mediated lymphocyte adhesion, thereby recapitulating the effects of VEGF. In conclusion, this study provides new insights on the mechanisms leading to the tumor EC anergy vs immune cells and opens new perspectives for the use of antiangiogenic strategies as adjuvant approaches to cancer immunotherapy.
肿瘤可能在多个层面逃避免疫反应,包括通过淋巴细胞与血管壁相互作用的缺陷。肿瘤血管内衬的内皮细胞(EC)的血管生成特性可能是这种无反应性的原因。在本研究中,我们研究了除粘附分子下调之外的其他机制是否可能参与其中,特别是依赖于小窝平台的信号通路。为了模拟肿瘤微环境的影响,将EC暴露于肿瘤坏死因子-α(TNF-α)和促血管生成的血管内皮生长因子(VEGF)。我们发现,短期或长期VEGF预处理后,活化的EC上淋巴细胞粘附受到显著抑制。我们进一步证明,VEGF不影响主要粘附分子的丰度,但与EC表面ICAM-1和VCAM-1的聚集缺陷有关。我们还发现,小窝结构蛋白小窝蛋白-1(caveolin-1)的过表达克服了VEGF介导的粘附抑制并恢复了ICAM-1的聚集。相反,用小窝蛋白-1小干扰RNA转导EC可降低TNF-α依赖性的粘附增加。最后,我们确定内皮型一氧化氮合酶(endothelial NO synthase)介导的VEGF诱导的一氧化氮(NO)产生是小窝蛋白-1丰度变化的主要靶点。我们发现,一氧化氮合酶抑制剂N-硝基-L-精氨酸甲酯可以逆转VEGF对淋巴细胞粘附和EC细胞骨架重排的抑制作用。对称地,一种NO供体被证明可阻止ICAM聚集介导的淋巴细胞粘附,从而重现VEGF的作用。总之,本研究为导致肿瘤EC对免疫细胞无反应性的机制提供了新的见解,并为使用抗血管生成策略作为癌症免疫治疗的辅助方法开辟了新的前景。