Suppr超能文献

一个用于探索植物孢子体自交不亲和系统中复杂显性模式的通用模型。

A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems.

作者信息

Billiard Sylvain, Castric Vincent, Vekemans Xavier

机构信息

Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille 1, F-59655 Villeneuve d'Ascq Cedex, France.

出版信息

Genetics. 2007 Mar;175(3):1351-69. doi: 10.1534/genetics.105.055095. Epub 2007 Jan 21.

Abstract

We developed a general model of sporophytic self-incompatibility under negative frequency-dependent selection allowing complex patterns of dominance among alleles. We used this model deterministically to investigate the effects on equilibrium allelic frequencies of the number of dominance classes, the number of alleles per dominance class, the asymmetry in dominance expression between pollen and pistil, and whether selection acts on male fitness only or both on male and on female fitnesses. We show that the so-called "recessive effect" occurs under a wide variety of situations. We found emerging properties of finite population models with several alleles per dominance class such as that higher numbers of alleles are maintained in more dominant classes and that the number of dominance classes can evolve. We also investigated the occurrence of homozygous genotypes and found that substantial proportions of those can occur for the most recessive alleles. We used the model for two species with complex dominance patterns to test whether allelic frequencies in natural populations are in agreement with the distribution predicted by our model. We suggest that the model can be used to test explicitly for additional, allele-specific, selective forces.

摘要

我们建立了一个在负频率依赖选择下的孢子体自交不亲和通用模型,该模型允许等位基因之间存在复杂的显性模式。我们用这个模型确定性地研究了显性等级数量、每个显性等级的等位基因数量、花粉与雌蕊之间显性表达的不对称性,以及选择是仅作用于雄性适合度还是同时作用于雄性和雌性适合度对等位基因平衡频率的影响。我们表明,所谓的“隐性效应”在多种情况下都会出现。我们发现了每个显性等级有多个等位基因的有限种群模型的一些新特性,比如在更显性的等级中能维持更多的等位基因数量,以及显性等级数量可以进化。我们还研究了纯合基因型的出现情况,发现对于最隐性的等位基因,相当比例的纯合基因型会出现。我们用这个模型对具有复杂显性模式的两个物种进行测试,以检验自然种群中的等位基因频率是否与我们模型预测的分布一致。我们建议该模型可用于明确检验其他特定于等位基因的选择力。

相似文献

1
A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems.
Genetics. 2007 Mar;175(3):1351-69. doi: 10.1534/genetics.105.055095. Epub 2007 Jan 21.
2
Evolutionary dynamics of sporophytic self-incompatibility alleles in plants.
Genetics. 1997 Oct;147(2):835-46. doi: 10.1093/genetics/147.2.835.
6
Allelic genealogies in sporophytic self-incompatibility systems in plants.
Genetics. 1998 Nov;150(3):1187-98. doi: 10.1093/genetics/150.3.1187.
7
COMPUTER PROGRAMS: nessi: a program for numerical estimations in sporophytic self-incompatibility genetic systems.
Mol Ecol Resour. 2008 Mar;8(2):295-8. doi: 10.1111/j.1471-8286.2007.01985.x.
8
Inheritance and dominance of self-incompatibility alleles in polyploid Arabidopsis lyrata.
Heredity (Edinb). 2004 Nov;93(5):476-86. doi: 10.1038/sj.hdy.6800526.

引用本文的文献

2
Molecular mechanisms of self-incompatibility in Brassicaceae and Solanaceae.
Proc Jpn Acad Ser B Phys Biol Sci. 2024;100(4):264-280. doi: 10.2183/pjab.100.014.
4
Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae.
Plant Reprod. 2023 Mar;36(1):125-138. doi: 10.1007/s00497-022-00451-6. Epub 2022 Oct 25.
6
Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection.
Evol Appl. 2020 Mar 3;13(6):1279-1297. doi: 10.1111/eva.12933. eCollection 2020 Jul.
7
Fitness differences suppress the number of mating types in evolving isogamous species.
R Soc Open Sci. 2020 Feb 26;7(2):192126. doi: 10.1098/rsos.192126. eCollection 2020 Feb.
8
Invasion and Extinction Dynamics of Mating Types Under Facultative Sexual Reproduction.
Genetics. 2019 Oct;213(2):567-580. doi: 10.1534/genetics.119.302306. Epub 2019 Aug 7.
9
The impact of self-incompatibility systems on the prevention of biparental inbreeding.
PeerJ. 2017 Nov 24;5:e4085. doi: 10.7717/peerj.4085. eCollection 2017.

本文引用的文献

1
MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI-ALLELIC SELF-INCOMPATIBILITY SYSTEMS IN PLANTS.
Evolution. 1998 Feb;52(1):19-29. doi: 10.1111/j.1558-5646.1998.tb05134.x.
2
Frequency and Distribution of Self-Incompatibility Alleles in RAPHANUS RAPHANISTRUM.
Genetics. 1967 Jun;56(2):241-51. doi: 10.1093/genetics/56.2.241.
3
The Distribution of Self-Sterility Alleles in Populations.
Genetics. 1939 Jun;24(4):538-52. doi: 10.1093/genetics/24.4.538.
4
Selection at work in self-incompatible Arabidopsis lyrata: mating patterns in a natural population.
Genetics. 2006 Jan;172(1):477-84. doi: 10.1534/genetics.105.045682. Epub 2005 Sep 12.
8
Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.
J Evol Biol. 2004 May;17(3):554-61. doi: 10.1111/j.1420-9101.2004.00699.x.
9
Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand.
Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):911-7. doi: 10.1073/pnas.2637116100. Epub 2003 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验