Suppr超能文献

S位点F-box基因家族成员:苹果和日本梨中具有S单倍型特异性多态性的多个花粉特异性F-box基因

S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear.

作者信息

Sassa Hidenori, Kakui Hiroyuki, Miyamoto Mayu, Suzuki Yusuke, Hanada Toshio, Ushijima Koichiro, Kusaba Makoto, Hirano Hisashi, Koba Takato

机构信息

Faculty of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan.

出版信息

Genetics. 2007 Apr;175(4):1869-81. doi: 10.1534/genetics.106.068858. Epub 2007 Jan 21.

Abstract

Although recent findings suggest that the F-box genes SFB/SLF control pollen-part S specificity in the S-RNase-based gametophytic self-incompatibility (GSI) system, how these genes operate in the system is unknown, and functional variation of pollen S genes in different species has been reported. Here, we analyzed the S locus of two species of Maloideae: apple (Malus domestica) and Japanese pear (Pyrus pyrifolia). The sequencing of a 317-kb region of the apple S9 haplotype revealed two similar F-box genes. Homologous sequences were isolated from different haplotypes of apple and Japanese pear, and they were found to be polymorphic genes derived from the S locus. Since each S haplotype contains two or three related genes, the genes were named SFBB for S locus F-box brothers. The SFBB genes are specifically expressed in pollen, and variable regions of the SFBB genes are under positive selection. In a style-specific mutant S haplotype of Japanese pear, the SFBB genes are retained. Apart from their multiplicity, SFBB genes meet the expected characteristics of pollen S. The unique multiplicity of SFBB genes as the pollen S candidate is discussed in the context of mechanistic variation in the S-RNase-based GSI system.

摘要

尽管最近的研究结果表明,F-box基因SFB/SLF在基于S-RNase的配子体自交不亲和(GSI)系统中控制花粉部分的S特异性,但这些基因在该系统中的作用方式尚不清楚,并且不同物种中花粉S基因的功能变异已有报道。在此,我们分析了苹果亚科两个物种的S位点:苹果(Malus domestica)和日本梨(Pyrus pyrifolia)。苹果S9单倍型317-kb区域的测序揭示了两个相似的F-box基因。从苹果和日本梨的不同单倍型中分离出同源序列,发现它们是源自S位点的多态性基因。由于每个S单倍型包含两个或三个相关基因,这些基因被命名为S位点F-box兄弟(SFBB)。SFBB基因在花粉中特异性表达,并且SFBB基因的可变区域处于正选择之下。在日本梨的花柱特异性突变S单倍型中,SFBB基因得以保留。除了它们的多重性外,SFBB基因符合花粉S的预期特征。在基于S-RNase的GSI系统的机制变异背景下,讨论了SFBB基因作为花粉S候选基因的独特多重性。

相似文献

2
Apple S locus region represents a large cluster of related, polymorphic and pollen-specific F-box genes.
Plant Mol Biol. 2010 Sep;74(1-2):143-54. doi: 10.1007/s11103-010-9662-z. Epub 2010 Jul 15.
4
Polymorphism of SFBB-gamma and its use for S genotyping in Japanese pear (Pyrus pyrifolia).
Plant Cell Rep. 2007 Sep;26(9):1619-25. doi: 10.1007/s00299-007-0386-8. Epub 2007 Jun 1.
6
Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.).
Plant Reprod. 2013 Jun;26(2):101-11. doi: 10.1007/s00497-013-0212-0. Epub 2013 Feb 12.
9
Deletion of a 236 kb region around S 4-RNase in a stylar-part mutant S 4sm-haplotype of Japanese pear.
Plant Mol Biol. 2008 Mar;66(4):389-400. doi: 10.1007/s11103-007-9277-1. Epub 2008 Jan 4.

引用本文的文献

1
S-RNase-based self-incompatibility in angiosperms: Degradation, condensation, and evolution.
Plant Physiol. 2025 Sep 1;199(1). doi: 10.1093/plphys/kiaf360.
2
PSIA: A Comprehensive Knowledgebase of Plant Self-incompatibility.
Genomics Proteomics Bioinformatics. 2025 Jul 11;23(3). doi: 10.1093/gpbjnl/qzaf046.
5
The influence of the pollination compatibility type on the pistil expression in European pear ().
Front Genet. 2024 Apr 9;15:1360332. doi: 10.3389/fgene.2024.1360332. eCollection 2024.
6
Transcriptomic Analysis of Self-Incompatibility in Alfalfa.
Plants (Basel). 2024 Mar 19;13(6):875. doi: 10.3390/plants13060875.
7
Transposable elements cause the loss of self-incompatibility in citrus.
Plant Biotechnol J. 2024 May;22(5):1113-1131. doi: 10.1111/pbi.14250. Epub 2023 Dec 1.
9
and CRISPR-Cas9 double knockouts show enhanced self-fertility in diploid .
Front Plant Sci. 2023 May 31;14:1151347. doi: 10.3389/fpls.2023.1151347. eCollection 2023.

本文引用的文献

3
Gametophytic self-incompatibility: understanding the cellular mechanisms involved in "self" pollen tube inhibition.
Planta. 2006 Jul;224(2):233-45. doi: 10.1007/s00425-006-0284-2. Epub 2006 Jun 1.
4
Comparison of the genome structure of the self-incompatibility (S) locus in interspecific pairs of S haplotypes.
Genetics. 2006 Jun;173(2):1157-67. doi: 10.1534/genetics.104.037267. Epub 2006 Apr 19.
5
Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana.
Nature. 2006 Feb 16;439(7078):805-10. doi: 10.1038/nature04491.
6
Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus.
Genetics. 2006 Feb;172(2):1191-8. doi: 10.1534/genetics.105.049395. Epub 2005 Oct 11.
7
The evolutionary dynamics of self-incompatibility systems.
Trends Genet. 2005 Sep;21(9):500-5. doi: 10.1016/j.tig.2005.07.003.
8
Genomic changes in synthetic Arabidopsis polyploids.
Plant J. 2005 Jan;41(2):221-30. doi: 10.1111/j.1365-313X.2004.02297.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验