Suppr超能文献

贝叶斯系统发育模型的共轭吉布斯抽样

Conjugate Gibbs sampling for Bayesian phylogenetic models.

作者信息

Lartillot Nicolas

机构信息

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CNRS-University of Montpellier, Montpellier, France.

出版信息

J Comput Biol. 2006 Dec;13(10):1701-22. doi: 10.1089/cmb.2006.13.1701.

Abstract

We propose a new Markov Chain Monte Carlo (MCMC) sampling mechanism for Bayesian phylogenetic inference. This method, which we call conjugate Gibbs, relies on analytical conjugacy properties, and is based on an alternation between data augmentation and Gibbs sampling. The data augmentation step consists in sampling a detailed substitution history for each site, and across the whole tree, given the current value of the model parameters. Provided convenient priors are used, the parameters of the model can then be directly updated by a Gibbs sampling procedure, conditional on the current substitution history. Alternating between these two sampling steps yields a MCMC device whose equilibrium distribution is the posterior probability density of interest. We show, on real examples, that this conjugate Gibbs method leads to a significant improvement of the mixing behavior of the MCMC. In all cases, the decorrelation times of the resulting chains are smaller than those obtained by standard Metropolis Hastings procedures by at least one order of magnitude. The method is particularly well suited to heterogeneous models, i.e. assuming site-specific random variables. In particular, the conjugate Gibbs formalism allows one to propose efficient implementations of complex models, for instance assuming site-specific substitution processes, that would not be accessible to standard MCMC methods.

摘要

我们提出了一种用于贝叶斯系统发育推断的新型马尔可夫链蒙特卡罗(MCMC)采样机制。我们将这种方法称为共轭吉布斯方法,它依赖于解析共轭性质,并且基于数据扩充和吉布斯采样之间的交替。数据扩充步骤包括在给定模型参数当前值的情况下,为每个位点以及整个树采样详细的替换历史。如果使用了合适的先验,那么模型参数随后可以通过吉布斯采样过程直接更新,条件是当前的替换历史。在这两个采样步骤之间交替产生一个MCMC装置,其平衡分布是感兴趣的后验概率密度。我们在实际例子中表明,这种共轭吉布斯方法显著改善了MCMC的混合行为。在所有情况下,所得链的去相关时间比通过标准的梅特罗波利斯-黑斯廷斯程序获得的去相关时间至少小一个数量级。该方法特别适用于异质模型,即假设位点特异性随机变量的模型。特别是,共轭吉布斯形式允许人们提出复杂模型的有效实现,例如假设位点特异性替换过程的模型,而标准MCMC方法无法处理此类模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验