Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA.
Department of Biology, University of Hawai'i 2538 McCarthy Mall, Edmondson Hall Room 216, Honolulu, HI 96822, USA.
Syst Biol. 2018 Jul 1;67(4):729-734. doi: 10.1093/sysbio/syy008.
Bayesian phylogenetic inference relies on the use of Markov chain Monte Carlo (MCMC) to provide numerical approximations of high-dimensional integrals and estimate posterior probabilities. However, MCMC performs poorly when posteriors are very rugged (i.e., regions of high posterior density are separated by regions of low posterior density). One technique that has become popular for improving numerical estimates from MCMC when distributions are rugged is Metropolis coupling (MC$^3$). In MC$^3$, additional chains are employed to sample flattened transformations of the posterior and improve mixing. Here, we highlight several underappreciated behaviors of MC3. Notably, estimated posterior probabilities may be incorrect but appear to converge, when individual chains do not mix well, despite different chains sampling trees from all relevant areas in tree space. Counterintuitively, such behavior can be more difficult to diagnose with increased numbers of chains. We illustrate these surprising behaviors of MC$^3$ using a simple, non-phylogenetic example and phylogenetic examples involving both constrained and unconstrained analyses. To detect and mitigate the effects of these behaviors, we recommend increasing the number of independent analyses and varying the temperature of the hottest chain in current versions of Bayesian phylogenetic software. Convergence diagnostics based on the behavior of the hottest chain may also help detect these behaviors and could form a useful addition to future software releases.
贝叶斯系统发育推断依赖于马尔可夫链蒙特卡罗 (MCMC) 的使用,以提供高维积分的数值逼近并估计后验概率。然而,当后验非常崎岖(即,高后验密度的区域被低后验密度的区域隔开)时,MCMC 的性能会很差。当分布崎岖不平时,一种用于改进 MCMC 数值估计的流行技术是 Metropolis 耦合 (MC$^3$)。在 MC$^3$中,使用额外的链来对后验的扁平化变换进行采样,并提高混合度。在这里,我们强调了 MC3 的几个未被充分认识的行为。值得注意的是,当单个链混合不均匀时,尽管不同的链从树空间的所有相关区域中采样树,但估计的后验概率可能不正确但似乎会收敛。反直觉的是,随着链数的增加,这种行为可能更难诊断。我们使用一个简单的、非系统发育的例子和涉及约束和非约束分析的系统发育例子来说明 MC$^3$的这些令人惊讶的行为。为了检测和减轻这些行为的影响,我们建议增加独立分析的数量,并改变当前贝叶斯系统发育软件版本中最热链的温度。基于最热链行为的收敛诊断也可以帮助检测这些行为,并可能成为未来软件版本的有用补充。