Suppr超能文献

基于微阵列的基因特征在预测前列腺癌预后中的临床应用

Clinical utility of microarray-derived genetic signatures in predicting outcomes in prostate cancer.

作者信息

Reddy G Kesava, Balk Steven P

机构信息

CIG Media Group, LP, Dallas, TX, USA.

出版信息

Clin Genitourin Cancer. 2006 Dec;5(3):187-9. doi: 10.3816/CGC.2006.n.035.

Abstract

Prostate cancer is a complex heterogeneous disease, and risk stratification remains a significant clinical challenge. Gene microarray has been developed to provide better prediction of clinical outcomes and potentially improve management of patients with various malignancies, including prostate cancer. Currently, several studies are evaluating the clinical significance of gene expression signatures in prostate cancer. These approaches might provide outcome predictions, such as treatment response, progression-free survival, overall survival, and metastatic status and offer new strategies to identify patients at high risk for personalized cancer therapies. This article discusses the latest developments in gene expression-based signatures that predict clinical behavior of prostate cancer. Gene profiling could lead to enhanced early detection and prognosis of prostate cancer, resulting in improved overall survival. The ability to predict clinical outcomes by the microarray-derived genetic signatures is promising; however, further studies are warranted to optimize its clinical utility in patients with prostate cancer.

摘要

前列腺癌是一种复杂的异质性疾病,风险分层仍然是一项重大的临床挑战。基因微阵列已被开发出来,以更好地预测临床结果,并有可能改善包括前列腺癌在内的各种恶性肿瘤患者的管理。目前,多项研究正在评估基因表达特征在前列腺癌中的临床意义。这些方法可能提供结果预测,如治疗反应、无进展生存期、总生存期和转移状态,并提供新的策略来识别有个性化癌症治疗高风险的患者。本文讨论了基于基因表达的特征预测前列腺癌临床行为的最新进展。基因分析可能会提高前列腺癌的早期检测和预后,从而改善总生存期。通过微阵列衍生的基因特征预测临床结果的能力很有前景;然而,需要进一步研究以优化其在前列腺癌患者中的临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验