Suppr超能文献

用于透射电子显微镜的自动化100位样本加载器和图像采集系统。

Automated 100-position specimen loader and image acquisition system for transmission electron microscopy.

作者信息

Lefman Jonathan, Morrison Robert, Subramaniam Sriram

机构信息

Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20817, USA.

出版信息

J Struct Biol. 2007 Jun;158(3):318-26. doi: 10.1016/j.jsb.2006.11.007. Epub 2006 Dec 16.

Abstract

We report the development of a novel, multi-specimen imaging system for high-throughput transmission electron microscopy. Our cartridge-based loading system, called the "Gatling", permits the sequential examination of as many as 100 specimens in the microscope for room temperature electron microscopy using mechanisms for rapid and automated specimen exchange. The software for the operation of the Gatling and automated data acquisition has been implemented in an updated version of our in-house program AutoEM. In the current implementation of the system, the time required to deliver 95 specimens into the microscope and collect overview images from each is about 13 h. Regions of interest are identified from a low magnification atlas generation from each specimen and an unlimited number of higher magnifications images can be subsequently acquired from these regions using fully automated data acquisition procedures that can be controlled from a remote interface. We anticipate that the availability of the Gatling will greatly accelerate the speed of data acquisition for a variety of applications in biology, materials science, and nanotechnology that require rapid screening and image analysis of multiple specimens.

摘要

我们报告了一种用于高通量透射电子显微镜的新型多样本成像系统的开发情况。我们基于盒式的装载系统,称为“加特林”,通过快速自动样本交换机制,允许在显微镜中对多达100个样本进行室温电子显微镜的顺序检查。用于加特林操作和自动数据采集的软件已在我们内部程序AutoEM的更新版本中实现。在该系统的当前实现中,将95个样本送入显微镜并从每个样本收集概述图像所需的时间约为13小时。从每个样本生成的低倍率图谱中识别感兴趣区域,随后可以使用可从远程接口控制的全自动数据采集程序从这些区域获取无限数量的更高倍率图像。我们预计,加特林的可用性将大大加快生物学、材料科学和纳米技术中各种需要对多个样本进行快速筛选和图像分析的应用的数据采集速度。

相似文献

1
Automated 100-position specimen loader and image acquisition system for transmission electron microscopy.
J Struct Biol. 2007 Jun;158(3):318-26. doi: 10.1016/j.jsb.2006.11.007. Epub 2006 Dec 16.
2
Software tools for automated transmission electron microscopy.
Nat Methods. 2019 Jun;16(6):471-477. doi: 10.1038/s41592-019-0396-9. Epub 2019 May 13.
3
Automated specimen search in cryo-TEM observation with DIFF-defocus imaging.
J Electron Microsc (Tokyo). 2010;59(4):299-310. doi: 10.1093/jmicro/dfq009. Epub 2010 Mar 30.
4
JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles.
J Struct Biol. 2009 Jan;165(1):1-9. doi: 10.1016/j.jsb.2008.09.006. Epub 2008 Sep 30.
5
RDFTools: a software tool for quantifying short-range ordering in amorphous materials.
Microsc Res Tech. 2012 Feb;75(2):153-63. doi: 10.1002/jemt.21038. Epub 2011 Jul 14.
6
Fully automated multi-grid cryoEM screening using Smart Leginon.
IUCrJ. 2023 Jan 1;10(Pt 1):77-89. doi: 10.1107/S2052252522010624.
8
Does contamination buildup limit throughput for automated cryoEM?
J Struct Biol. 2006 Jun;154(3):303-11. doi: 10.1016/j.jsb.2006.03.005. Epub 2006 Apr 5.
10
Automation of data acquisition in electron crystallography.
Methods Mol Biol. 2013;955:307-12. doi: 10.1007/978-1-62703-176-9_17.

引用本文的文献

1
Volume electron microscopy.
Nat Rev Methods Primers. 2022 Jul 7;2:51. doi: 10.1038/s43586-022-00131-9.
2
A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster.
Cell. 2018 Jul 26;174(3):730-743.e22. doi: 10.1016/j.cell.2018.06.019. Epub 2018 Jul 19.
3
High-throughput methods for electron crystallography.
Methods Mol Biol. 2013;955:273-96. doi: 10.1007/978-1-62703-176-9_15.
4
Membrane protein structure determination by electron crystallography.
Curr Opin Struct Biol. 2012 Aug;22(4):520-8. doi: 10.1016/j.sbi.2012.04.003. Epub 2012 May 8.
5
Detection of membrane protein two-dimensional crystals in living cells.
Biophys J. 2011 Jan 5;100(1):207-14. doi: 10.1016/j.bpj.2010.10.051.
6
Present and future of membrane protein structure determination by electron crystallography.
Adv Protein Chem Struct Biol. 2010;81:33-60. doi: 10.1016/B978-0-12-381357-2.00002-5.
7
Two-dimensional crystallization of integral membrane proteins for electron crystallography.
Methods Mol Biol. 2010;654:187-205. doi: 10.1007/978-1-60761-762-4_10.
8
Specimen preparation for electron diffraction of thin crystals.
Micron. 2011 Feb;42(2):132-40. doi: 10.1016/j.micron.2010.05.003. Epub 2010 May 19.
9
Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins.
J Struct Biol. 2010 Jul;171(1):102-10. doi: 10.1016/j.jsb.2010.02.018. Epub 2010 Mar 1.
10
Towards automated screening of two-dimensional crystals.
J Struct Biol. 2007 Dec;160(3):324-31. doi: 10.1016/j.jsb.2007.09.012. Epub 2007 Sep 25.

本文引用的文献

1
Automated electron microscope tomography using robust prediction of specimen movements.
J Struct Biol. 2005 Oct;152(1):36-51. doi: 10.1016/j.jsb.2005.07.007.
2
Automated molecular microscopy: the new Leginon system.
J Struct Biol. 2005 Jul;151(1):41-60. doi: 10.1016/j.jsb.2005.03.010.
4
TOM software toolbox: acquisition and analysis for electron tomography.
J Struct Biol. 2005 Mar;149(3):227-34. doi: 10.1016/j.jsb.2004.10.006.
5
Robotic grid loading system for a transmission electron microscope.
J Struct Biol. 2004 Jun;146(3):431-40. doi: 10.1016/j.jsb.2004.02.002.
7
Leginon: an automated system for acquisition of images from vitreous ice specimens.
J Struct Biol. 2000 Oct;132(1):33-45. doi: 10.1006/jsbi.2000.4314.
8
Leginon: a system for fully automated acquisition of 1000 electron micrographs a day.
Ultramicroscopy. 1999 Jul;77(3-4):153-61. doi: 10.1016/s0304-3991(99)00043-1.
9
emScope: A Tool Kit for Control and Automation of a Remote Electron Microscope.
J Struct Biol. 1997 Dec;120(3):309-19. doi: 10.1006/jsbi.1997.3918.
10
Automated microscopy for electron tomography.
Ultramicroscopy. 1992 Oct;46(1-4):207-27. doi: 10.1016/0304-3991(92)90016-d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验