Suppr超能文献

嗜热栖热菌α-L-岩藻糖苷酶向α-L-转岩藻糖苷酶的定向进化。

Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase.

作者信息

Osanjo George, Dion Michel, Drone Jullien, Solleux Claude, Tran Vinh, Rabiller Claude, Tellier Charles

机构信息

Université de Nantes, Nantes Atlantique Universités, UMR CNRS 6204, Biotechnologie, Biocatalyse, Biorégulation, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, Nantes, F- 44322 France.

出版信息

Biochemistry. 2007 Jan 30;46(4):1022-33. doi: 10.1021/bi061444w.

Abstract

The alpha-L-fucosidase from Thermotoga maritima (Tm alpha fuc) was converted into alpha-L-transfucosidase variants by directed evolution. The wild-type enzyme catalyzes oligosaccharide synthesis by transfer of a fucosyl residue from a pNP-fucoside donor to pNP-fucoside (self-condensation) with alpha-(1-->3) regioselectivity or pNP-galactoside (transglycosylation) with alpha-(1-->2) regioselectivity at low yields (7%). The wild-type enzyme was submitted to one cycle of mutagenesis, followed by rational recombination of the selected mutations, which allowed identification of variants with improved transferase activity. The transferase and hydrolytic kinetics of all the mutants were assessed by NMR methods and capillary electrophoresis. It was shown that the best mutant exhibited a dramatic 32-fold increase in the transferase/hydrolytic kinetic ratio, while keeping 60% of the overall wild-type enzyme activity. Accordingly, the maximum yield of a specific transglycosylation product [pNP-Gal-alpha-(1-->2)-Fuc] reached more than 60% compared to 7% with WT enzyme at equimolar and low concentrations of donor and acceptor (10 mM). Such an improvement was obtained with only three mutations (T264A, Y267F, L322P), which were all located in the second amino acid shell of the fucosidase active site. Molecular modeling suggested that some of these mutations (T264A, Y267F) cause a reorientation of the amino acids that are in direct contact with the substrates, resulting in a better docking energy. Such mutants with high transglycosidase activity may constitute novel enzymatic tools for the synthesis of fucooligosaccharides.

摘要

通过定向进化,将来自嗜热栖热菌(Thermotoga maritima)的α-L-岩藻糖苷酶(Tmαfuc)转化为α-L-转岩藻糖苷酶变体。野生型酶通过将岩藻糖基残基从对硝基苯基岩藻糖苷供体转移至对硝基苯基岩藻糖苷(自缩合反应),以α-(1→3)区域选择性催化寡糖合成,或通过将岩藻糖基残基从对硝基苯基岩藻糖苷供体转移至对硝基苯基半乳糖苷(转糖基化反应),以α-(1→2)区域选择性催化寡糖合成,但产率较低(7%)。对野生型酶进行一轮诱变,随后对所选突变进行理性重组,从而鉴定出具有更高转移酶活性的变体。通过核磁共振方法和毛细管电泳评估所有突变体的转移酶和水解动力学。结果表明,最佳突变体的转移酶/水解动力学比值显著提高了32倍,同时保留了野生型酶总体活性的60%。因此,在供体和受体等摩尔且低浓度(10 mM)的情况下,与野生型酶相比,特定转糖基化产物[pNP-Gal-α-(1→2)-Fuc]的最大产率达到了60%以上,而野生型酶的产率仅为7%。仅通过三个突变(T264A、Y267F、L322P)就实现了这种改进,这些突变均位于岩藻糖苷酶活性位点的第二个氨基酸壳层中。分子模拟表明,其中一些突变(T264A、Y267F)导致与底物直接接触的氨基酸重新定向,从而产生更好的对接能量。这种具有高转糖基酶活性的突变体可能构成合成岩藻糖寡糖的新型酶工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验