Cobucci-Ponzano Beatrice, Conte Fiorella, Bedini Emiliano, Corsaro Maria Michela, Parrilli Michelangelo, Sulzenbacher Gerlind, Lipski Alexandra, Dal Piaz Fabrizio, Lepore Laura, Rossi Mosè, Moracci Marco
Institute of Protein Biochemistry - Consiglio Nazionale delle Ricerche, 80131 Naples, Italy.
Chem Biol. 2009 Oct 30;16(10):1097-108. doi: 10.1016/j.chembiol.2009.09.013.
Fucose-containing oligosaccharides play a central role in physio-pathological events, and fucosylated oligosaccharides have interesting potential applications in biomedicine. No methods for the large-scale production of oligosaccharides are currently available, but the chemo-enzymatic approach is very promising. Glycosynthases, mutated glycosidases that synthesize oligosaccharides in high yields, have been demonstrated to be an interesting alternative. However, examples of glycosynthases available so far are restricted to a limited number of glycosidases families and to only one retaining alpha-glycosynthase. We show here that new mutants of two alpha-L-fucosidases are efficient alpha-L-fucosynthases. The approach shown utilized beta-L-fucopyranosyl azide as donor substrate leading to transglycosylation yields up to 91%. This is the first method exploiting a beta-glycosyl azide donor for alpha-glycosynthases; its applicability to the glycosynthetic methodology in a wider perspective is presented.
含岩藻糖的寡糖在生理病理事件中发挥着核心作用,岩藻糖基化寡糖在生物医学领域具有有趣的潜在应用。目前尚无大规模生产寡糖的方法,但化学酶法非常有前景。糖基合成酶是一种经突变的糖苷酶,能够高产率地合成寡糖,已被证明是一种有趣的替代方法。然而,迄今为止可用的糖基合成酶实例仅限于有限数量的糖苷酶家族,并且仅有一种保留型α-糖基合成酶。我们在此表明,两种α-L-岩藻糖苷酶的新突变体是高效的α-L-岩藻糖基合成酶。所展示的方法利用β-L-呋喃岩藻糖基叠氮化物作为供体底物,导致转糖基化产率高达91%。这是第一种利用β-糖基叠氮化物供体用于α-糖基合成酶的方法;从更广泛的角度介绍了其在糖合成方法中的适用性。