Suppr超能文献

基于化合物固定化亲和色谱的药物发现化学蛋白质组学

Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography.

作者信息

Katayama Hiroyuki, Oda Yoshiya

机构信息

Eisai Co., Ltd., Laboratory of Seed Finding Technology, Tsukuba, Ibaraki, Japan.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Aug;855(1):21-7. doi: 10.1016/j.jchromb.2006.12.047. Epub 2007 Jan 11.

Abstract

Chemical proteomics is an effective approach to focused proteomics, having the potential to find specific interactors in moderate-scale comprehensive analysis. Unlike chemical genetics, chemical proteomics directly and comprehensively identifies proteins that bind specifically to candidate compounds by means of affinity chromatographic purification using the immobilized candidate, combined with mass spectrometric identification of interacting proteins. This is an effective approach for discovering unknown protein functions, identifying the molecular mechanisms of drug action, and obtaining information for optimization of lead compounds. However, immobilized-small molecule affinity chromatography always suffers from the problem of non-specific binders. Although several approaches were reported to reduce non-specific binding proteins, these are mainly focused on the use of low-binding-affinity beads or insertion of a spacer between the bead and the compound. Stable isotope labeling strategies have proven particularly advantageous for the discrimination of true interactors from many non-specific binders, including carrier proteins, such as serum albumin, and are expected to be valuable for drug discovery.

摘要

化学蛋白质组学是一种聚焦蛋白质组学的有效方法,有潜力在中等规模的综合分析中找到特定的相互作用分子。与化学遗传学不同,化学蛋白质组学通过使用固定化候选物进行亲和色谱纯化,并结合对相互作用蛋白质的质谱鉴定,直接且全面地鉴定与候选化合物特异性结合的蛋白质。这是一种发现未知蛋白质功能、确定药物作用分子机制以及获取先导化合物优化信息的有效方法。然而,固定化小分子亲和色谱总是存在非特异性结合物的问题。尽管有几种方法被报道用于减少非特异性结合蛋白,但这些方法主要集中在使用低结合亲和力的珠子或在珠子与化合物之间插入间隔物。稳定同位素标记策略已被证明在从许多非特异性结合物(包括载体蛋白,如血清白蛋白)中区分真正的相互作用分子方面特别有利,并且有望在药物发现中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验