Suppr超能文献

通过捕获化合物质谱法(CCMS)分析甲基转移酶和其他S-腺苷-L-高半胱氨酸结合蛋白。

Profiling of methyltransferases and other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS).

作者信息

Lenz Thomas, Poot Peter, Gräbner Olivia, Glinski Mirko, Weinhold Elmar, Dreger Mathias, Köster Hubert

机构信息

Department of Biochemistry/Analytics, caprotec bioanalytics GmbH.

出版信息

J Vis Exp. 2010 Dec 20(46):2264. doi: 10.3791/2264.

Abstract

There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography (1) or Activity Based Protein Profiling (2). Trifunctional Capture Compounds (CCs, Figure 1A) (3) are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-(L)-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" (4) or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-(L)-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature (5, 6). It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA (7), RNA (8), proteins (9), or small molecules (10). Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor (11). For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability (12), SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.

摘要

基于功能小分子 - 蛋白质相互作用,有多种方法可降低蛋白质组的复杂性,如亲和色谱法(1)或基于活性的蛋白质谱分析(2)。三功能捕获化合物(CCs,图1A)(3)是一种通用方法的基础,在该方法中,小分子探针(选择性功能,此处为S - 腺苷 - (L) - 高半胱氨酸,SAH,图1A)与靶蛋白之间最初的平衡驱动相互作用,通过CC独立的光可激活反应性功能(此处为苯叠氮化物)与靶蛋白表面之间的光交联而不可逆地固定。分选功能(此处为生物素)用于借助固相(此处为链霉亲和素磁珠)从复杂生物混合物中分离CC - 蛋白质缀合物。实验有两种配置可能:“离珠”(4)或本文所述的“在珠”配置(图1B)。选择性功能实际上可以是任何感兴趣的小分子(底物、抑制剂、药物分子)。S - 腺苷 - (L) - 甲硫氨酸(SAM,图1A)可能仅次于ATP,是自然界中使用最广泛的辅因子(5,6)。它在所有生物体中用作主要的甲基供体,化学反应由SAM依赖性甲基转移酶(MTases)催化,这些酶使DNA(7)、RNA(8)、蛋白质(9)或小分子(10)甲基化。鉴于甲基化反应在多种生理场景(基因调控、表观遗传学、代谢)中的关键作用,MTases的谱分析有望在功能蛋白质组学中变得与激酶的谱分析同样重要。然而,尚未有用于其谱分析的分析工具。我们最近引入了一种以SAH作为选择性基团的CC来填补这一技术空白(图1A)。SAH是SAM甲基转移后的产物,是一种已知的通用MTase产物抑制剂(11)。出于这个原因,并且由于天然辅因子SAM被其他转移辅因子其他部分或引发自由基反应的酶所使用,以及由于其化学不稳定性(12),SAH是用于靶向MTases的CC的理想选择性功能。在此,我们通过对大肠杆菌(E. coli)DH5α菌株中的MTases和其他SAH结合蛋白进行谱分析,报告了SAH - CC和CCMS的效用,大肠杆菌是特征最明确的原核生物之一,在无数生物化学、生物学和生物技术研究中一直是首选的模式生物。光激活交联提高了实验的产量和灵敏度,并且可以使用过量的游离SAH在竞争实验中轻松测试特异性。

相似文献

引用本文的文献

3
Chemical Proteomic Profiling of Human Methyltransferases.化学蛋白质组学分析人类甲基转移酶。
J Am Chem Soc. 2016 Oct 12;138(40):13335-13343. doi: 10.1021/jacs.6b07830. Epub 2016 Sep 30.

本文引用的文献

5
Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography.基于化合物固定化亲和色谱的药物发现化学蛋白质组学
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Aug;855(1):21-7. doi: 10.1016/j.jchromb.2006.12.047. Epub 2007 Jan 11.
6
S-adenosylmethionine and protein methylation.S-腺苷甲硫氨酸与蛋白质甲基化
Amino Acids. 2005 Jun;28(4):357-62. doi: 10.1007/s00726-005-0197-6. Epub 2005 Apr 21.
10
S-Adenosylmethionine.S-腺苷甲硫氨酸
Int J Biochem Cell Biol. 2000 Apr;32(4):391-5. doi: 10.1016/s1357-2725(99)00139-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验