Fox Paige M, Climo Michael W, Archer Gordon L
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, and Hunter Holmes McGuire Veteran Affairs Medical Center, P.O. Box 980565, 1101 East Marshall Street, Richmond, VA 23298, USA.
Antimicrob Agents Chemother. 2007 Apr;51(4):1274-80. doi: 10.1128/AAC.01060-06. Epub 2007 Jan 22.
Previous microarray data (E. Mongodin, J. Finan, M. W. Climo, A. Rosato, S. Gill, and G. L. Archer, J. Bacteriol. 185:4638-4643, 2003) noted an association in two vancomycin-intermediate Staphylococcus aureus (VISA) strains between high-level, passage-induced vancomycin resistance, a marked increase in the transcription of purine biosynthetic genes, and mutation of the putative purine regulator purR. Initial studies to report on the possible association between vancomycin resistance and alterations in purine metabolism in one of these strains (VP-32) confirmed, by Western analysis, an increase in the translation of PurH and PurM, two purine pathway enzymes. In addition, PurR was identified, by knockout and complementation in a vancomycin-susceptible strain, as a repressor of the purine biosynthetic operon in S. aureus, and the PurR missense mutation was shown to inactivate the repressor. However, despite the apparent relationship between increased purine biosynthesis and increased vancomycin resistance in VP-32, neither the addition of exogenous purines to a defined growth medium nor the truncation or inactivation of purR improved the growth of vancomycin-susceptible S. aureus in the presence of vancomycin. Furthermore, the passage of additional vancomycin-susceptible and VISA strains to high-level vancomycin resistance occurred without changes in cellular purine metabolism or mutation of purR despite the development of thickened cell walls in passaged strains. Thus, we could confirm neither a role for altered purine metabolism in the development of vancomycin resistance nor its requirement for the maintenance of a thickened cell wall. The failure of biochemical and physiological studies to support the association between transcription and phenotype initially found in careful microarray studies emphasizes the importance of follow-up investigations to confirm microarray observations.
先前的微阵列数据(E. Mongodin、J. Finan、M. W. Climo、A. Rosato、S. Gill和G. L. Archer,《细菌学杂志》185:4638 - 4643,2003年)指出,在两株万古霉素中介金黄色葡萄球菌(VISA)中,高水平、传代诱导的万古霉素耐药性、嘌呤生物合成基因转录的显著增加与假定的嘌呤调节因子purR的突变之间存在关联。对其中一株菌株(VP - 32)中万古霉素耐药性与嘌呤代谢改变之间可能存在的关联进行的初步研究,通过蛋白质免疫印迹分析证实,嘌呤途径的两种酶PurH和PurM的翻译增加。此外,通过在对万古霉素敏感的菌株中进行基因敲除和互补实验,确定PurR是金黄色葡萄球菌中嘌呤生物合成操纵子的阻遏物,并且PurR错义突变显示会使该阻遏物失活。然而,尽管在VP - 32中嘌呤生物合成增加与万古霉素耐药性增加之间存在明显关系,但在限定生长培养基中添加外源嘌呤,以及purR的截短或失活,均未改善对万古霉素敏感的金黄色葡萄球菌在万古霉素存在下的生长情况。此外,尽管传代菌株细胞壁增厚,但额外的对万古霉素敏感和VISA菌株传代至高水平万古霉素耐药时,细胞嘌呤代谢未发生变化,purR也未发生突变。因此,我们既无法证实嘌呤代谢改变在万古霉素耐药性形成中的作用,也无法证实其对维持增厚细胞壁的必要性。生化和生理学研究未能支持最初在细致的微阵列研究中发现的转录与表型之间的关联,这凸显了后续研究以证实微阵列观察结果的重要性。