Suppr超能文献

用于肽测序的多电荷质谱的建模与表征

Modeling and characterization of multi-charge mass spectra for peptide sequencing.

作者信息

Chong Ket Fah, Ning Kang, Leong Hon Wai, Pevzner Pavel

机构信息

Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore.

出版信息

J Bioinform Comput Biol. 2006 Dec;4(6):1329-52. doi: 10.1142/s021972000600248x.

Abstract

Peptide sequencing using tandem mass spectrometry data is an important and challenging problem in proteomics. We address the problem of peptide sequencing for multi-charge spectra. Most peptide sequencing algorithms currently consider only charge one or two ions even for higher-charge spectra. We give a characterization of multi-charge spectra by generalizing existing models. Using our models, we analyzed spectra from Global Proteome Machine (GPM) [Craig R, Cortens JP, Beavis RC, J Proteome Res 3:1234-1242, 2004.] (with charges 1-5), Institute for Systems Biology (ISB) [Keller A, Purvine S, Nesvizhskii AI, Stolyar S, Goodlett DR, Kolker E, OMICS 6:207-212, 2002.] and Orbitrap (both with charges 1-3). Our analysis for the GPM dataset shows that higher charge peaks contribute significantly to prediction of the complete peptide. They also help to explain why existing algorithms do not perform well on multi-charge spectra. Based on these analyses, we claim that peptide sequencing algorithms can achieve higher sensitivity results if they also consider higher charge ions. We verify this claim by proposing a de novo sequencing algorithm called the greedy best strong tag (GBST) algorithm that is simple but considers higher charge ions based on our new model. Evaluation on multi-charge spectra shows that our simple GBST algorithm outperforms Lutefisk and PepNovo, especially for the GPM spectra of charge three or more.

摘要

利用串联质谱数据进行肽段测序是蛋白质组学中一个重要且具有挑战性的问题。我们解决了多电荷谱的肽段测序问题。目前大多数肽段测序算法即使对于更高电荷的谱图也仅考虑单电荷或双电荷离子。我们通过推广现有模型对多电荷谱进行了特征描述。利用我们的模型,我们分析了来自全球蛋白质组机器(GPM)[Craig R, Cortens JP, Beavis RC, J Proteome Res 3:1234 - 来源:https://www.techwithtim.net/tutorials/game-development-with-python/ 1242, 2004.](电荷为1 - 5)、系统生物学研究所(ISB)[Keller A, Purvine S, Nesvizhskii AI, Stolyar S, Goodlett DR, Kolker E, OMICS 6:207 - 212, 2002.]以及轨道阱(两者电荷均为1 - 3)的谱图。我们对GPM数据集的分析表明,更高电荷的峰对完整肽段的预测有显著贡献。它们也有助于解释为什么现有算法在多电荷谱上表现不佳。基于这些分析,我们认为肽段测序算法如果也考虑更高电荷的离子,能够获得更高的灵敏度结果。我们通过提出一种名为贪婪最佳强标签(GBST)算法的从头测序算法来验证这一观点,该算法简单但基于我们的新模型考虑了更高电荷的离子。对多电荷谱的评估表明,我们简单的GBST算法优于Lutefisk和PepNovo,特别是对于电荷为3及以上的GPM谱图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验