Cao Xia, Nesvizhskii Alexey I
Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Proteome Res. 2008 Oct;7(10):4422-34. doi: 10.1021/pr800400q. Epub 2008 Sep 12.
The sequence tag-based peptide identification methods are a promising alternative to the traditional database search approach. However, a more comprehensive analysis, optimization, and comparison with established methods are necessary before these methods can gain widespread use in the proteomics community. Using the InsPecT open source code base ( Tanner et al., Anal. Chem. 2005, 77, 4626- 39 ), we present an improved sequence tag generation method that directly incorporates multicharged fragment ion peaks present in many tandem mass spectra of higher charge states. We also investigate the performance of sequence tagging under different settings using control data sets generated on five different types of mass spectrometers, as well as using a complex phosphopeptide-enriched sample. We also demonstrate that additional modeling of InsPecT search scores using a semiparametric approach incorporating the accuracy of the precursor ion mass measurement provides additional improvement in the ability to discriminate between correct and incorrect peptide identifications. The overall superior performance of the sequence tag-based peptide identification method is demonstrated by comparison with a commonly used SEQUEST/PeptideProphet approach.
基于序列标签的肽段鉴定方法是传统数据库搜索方法的一种有前景的替代方法。然而,在这些方法能够在蛋白质组学界广泛应用之前,需要进行更全面的分析、优化以及与现有方法的比较。利用InsPecT开源代码库(Tanner等人,《分析化学》,2005年,77卷,4626 - 39页),我们提出了一种改进的序列标签生成方法,该方法直接纳入了许多更高电荷态串联质谱中存在的多电荷碎片离子峰。我们还使用在五种不同类型质谱仪上生成的对照数据集以及使用复杂的富含磷酸肽的样品,研究了在不同设置下序列标签的性能。我们还证明,使用结合前体离子质量测量准确性的半参数方法对InsPecT搜索分数进行额外建模,在区分正确和错误肽段鉴定的能力方面提供了额外的改进。通过与常用的SEQUEST/PeptideProphet方法比较,证明了基于序列标签的肽段鉴定方法的总体优越性能。