College of General Education, Nagoya University, Nagoya 464, Japan.
Genetics. 1989 Jan;121(1):163-74. doi: 10.1093/genetics/121.1.163.
Evolution of mutation rate controlled by a neutral modifier is studied for a locus with two alleles under temporally fluctuating selection pressure. A general formula is derived to calculate the evolutionarily stable mutation rate mu(ess) in an infinitely large haploid population, and following results are obtained. (I) For any fluctuation, periodic or random: (1) if the recombination rate r per generation between the modifier and the main locus is 0, mu(ess) is the same as the optimal mutation rate mu(op) which maximizes the long-term geometric average of population fitness; and (2) for any r, if the strength s of selection per generation is very large, mu(ess) is equal to the reciprocal of the average number T of generations (duration time) during which one allele is persistently favored than the other. (II) For a periodic fluctuation in the limit of small s and r, mu(ess)T is a function of sT and rT with properties: (1) for a given sT, mu(ess)T decreases with increasing rT; (2) for sT </= 1, mu(ess)T is almost independent of sT, and depends on rT as mu(ess)T & 1.6 for rT << 1 and mu(ess)T & 6/rT for rT >> 1; and (3) for sT >/= 1, and for a given rT, mu(ess)T decreases with increasing sT to a certain minimum less than 1, and then increases to 1 asymptotically in the limit of large sT. (III) For a fluctuation consisting of multiple Fourier components (i.e., sine wave components), the component with the longest period is the most effective in determining mu(ess) (low pass filter effect). (IV) When the cost c of preventing mutation is positive, the modifier is nonneutral, and mu(ess) becomes larger than in the case of neutral modifier under the same selection pressure acting at the main locus. The value of c which makes mu(ess) equal to mu(op) of the neutral modifier case is calculated. It is argued that this value gives a critical cost such that, so long as the actual cost exceeds this value, the evolution rate at the main locus must be smaller than its mutation rate mu(ess).
在随时间变化的选择压力下,研究了具有两个等位基因的基因座上由中性修饰因子控制的突变率的演化。推导出了在无限大的单倍体群体中计算进化稳定突变率μ(ess)的一般公式,并得到以下结果。
(i)对于任何波动,无论是周期性的还是随机的:(1)如果修饰因子与主基因座之间的每代重组率 r 为 0,则 μ(ess)与使种群适应度的长期几何平均值最大化的最优突变率 μ(op)相同;(2)对于任何 r,如果每代选择的强度 s 非常大,则 μ(ess)等于一个等位基因持续优于另一个等位基因的世代数 T 的平均值。
(ii)对于小 s 和 r 的周期性波动的极限,μ(ess)T 是 sT 和 rT 的函数,具有以下性质:(1)对于给定的 sT,μ(ess)T 随 rT 的增加而减小;(2)对于 sT ≤ 1,μ(ess)T 几乎与 sT 无关,并且 rT 作为 μ(ess)T & 1.6 对于 rT << 1 和 μ(ess)T & 6/rT 对于 rT >> 1;(3)对于 sT ≥ 1,并且对于给定的 rT,μ(ess)T 随 sT 的增加而减小到一定的最小值小于 1,然后在 sT 很大的极限下渐近增加到 1。
(iii)对于由多个傅里叶分量组成的波动(即正弦波分量),最长周期的分量是决定 μ(ess)的最有效分量(低通滤波器效应)。
(iv)当预防突变的成本 c 为正时,修饰因子是非中性的,并且在主基因座上作用相同选择压力下,μ(ess)变得大于中性修饰因子的情况。计算使 μ(ess)等于中性修饰因子情况的 μ(op)的 c 值。有人认为,这个值给出了一个临界成本,只要实际成本超过这个值,主基因座的进化速度就必须小于其突变率 μ(ess)。