Gauvin Régis M, Delevoye Laurent, Hassan Rahma Ali, Keldenich Jérôme, Mortreux André
Unité de Catalyse et de Chimie du Solide UMR 8181 CNRS, ENSCL, BP 90108, 59652 Villeneuve d'Ascq Cedex, France.
Inorg Chem. 2007 Feb 19;46(4):1062-70. doi: 10.1021/ic0610334. Epub 2007 Jan 24.
Rare-earth silylamides [Ln{N(SiMe3)2}3] [1a-d, Ln = Y (1a), La (1b), Nd (1c), Sm (1d)] react with partially dehydroxylated silica to generate the singly surface-bonded species [(Si-O)Ln{N(SiMe3)2}2] (2a-d). Trimethylsilylation of silanols occurs during the grafting process, affording in fine a hydroxyl-free surface. Contacting these well-defined surface species with excess triphenylphosphine oxide yields [(Si-O)Ln{N(SiMe3)2}2(OPPh3)] surface adducts 3a-d as the major (80%) species, leaving about 20% of unreacted siloxide bisamido species (20%). In addition to elemental analysis and infrared spectroscopy, solid-state NMR spectroscopy was used to characterize these new materials and proved to be a particularly efficient tool for the study of the paramagnetic Nd- and Sm-containing materials and for providing unambiguous verification of OPPh3 coordination on the rare-earth center. Silica-supported rare-earth amides 2a-d are active catalysts for 1-hexene and styrene hydrosilylation and for phenylacetylene dimerization. When compared to the molecular species 1a-d, grafting of the catalyst induces significant changes in the activity and selectivity of these systems.