Suppr超能文献

一种软体节肢动物肌肉特性的本构模型。

A constitutive model for muscle properties in a soft-bodied arthropod.

作者信息

Dorfmann A, Trimmer B A, Woods W A

机构信息

Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

J R Soc Interface. 2007 Apr 22;4(13):257-69. doi: 10.1098/rsif.2006.0163.

Abstract

In this paper, we examine the mechanical properties of muscles in a soft-bodied arthropod under both passive and stimulated conditions. In particular, we examine the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, and show that its response is qualitatively similar to the behaviour of particle-reinforced rubber. Both materials are capable of large nonlinear elastic deformations, show a hysteretic behaviour and display stress softening during the first few cycles of repeated loading. The Manduca muscle can therefore be considered as different elastic materials during loading and unloading and is best described using the theory of pseudo-elasticity. We summarize the basic equations for transversely isotropic pseudo-elastic materials, first for general deformations and then for the appropriate uniaxial specialization. The constitutive relation proposed is in good agreement with the experimental data for both the passive and the stimulated conditions.

摘要

在本文中,我们研究了软体节肢动物在被动和受刺激条件下肌肉的力学性能。具体而言,我们研究了烟草天蛾幼虫烟草天蛾(Manduca sexta)的腹内侧内部肌肉,并表明其反应在性质上类似于颗粒增强橡胶的行为。这两种材料都能够进行大的非线性弹性变形,表现出滞后行为,并在重复加载的前几个循环中显示出应力软化。因此,烟草天蛾肌肉在加载和卸载过程中可被视为不同的弹性材料,最好用伪弹性理论来描述。我们总结了横向各向同性伪弹性材料的基本方程,首先是一般变形的方程,然后是适当的单轴特殊情况的方程。所提出的本构关系与被动和受刺激条件下的实验数据都非常吻合。

相似文献

1
A constitutive model for muscle properties in a soft-bodied arthropod.
J R Soc Interface. 2007 Apr 22;4(13):257-69. doi: 10.1098/rsif.2006.0163.
2
Muscle performance in a soft-bodied terrestrial crawler: constitutive modelling of strain-rate dependency.
J R Soc Interface. 2008 Mar 6;5(20):349-62. doi: 10.1098/rsif.2007.1076.
4
Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument.
J Theor Biol. 2009 Feb 7;256(3):447-57. doi: 10.1016/j.jtbi.2008.10.018. Epub 2008 Oct 29.
5
Modeling locomotion of a soft-bodied arthropod using inverse dynamics.
Bioinspir Biomim. 2011 Mar;6(1):016001. doi: 10.1088/1748-3182/6/1/016001. Epub 2010 Dec 15.
6
The biomechanical and neural control of hydrostatic limb movements in Manduca sexta.
J Exp Biol. 2004 Aug;207(Pt 17):3043-53. doi: 10.1242/jeb.01136.
7
On the accuracy and fitting of transversely isotropic material models.
J Mech Behav Biomed Mater. 2016 Aug;61:554-566. doi: 10.1016/j.jmbbm.2016.04.024. Epub 2016 Apr 22.
8
Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae.
Biol Bull. 2007 Apr;212(2):130-42. doi: 10.2307/25066590.
9
Indirect actuation reduces flight power requirements in via elastic energy exchange.
J R Soc Interface. 2019 Dec;16(161):20190543. doi: 10.1098/rsif.2019.0543. Epub 2019 Dec 18.
10
Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
J Mech Behav Biomed Mater. 2016 Aug;61:397-409. doi: 10.1016/j.jmbbm.2016.03.014. Epub 2016 Apr 14.

引用本文的文献

1
Competition between elasticity and adhesion in caterpillar locomotion.
J R Soc Interface. 2025 Apr;22(225):20240703. doi: 10.1098/rsif.2024.0703. Epub 2025 Apr 23.
2
Systematic review of skeletal muscle passive mechanics experimental methodology.
J Biomech. 2021 Dec 2;129:110839. doi: 10.1016/j.jbiomech.2021.110839. Epub 2021 Oct 26.
3
Caterpillar Climbing: Robust, Tension-Based Omni-Directional Locomotion.
J Insect Sci. 2018 May 1;18(3). doi: 10.1093/jisesa/iey055.
4
Dynamic self-stiffening in liquid crystal elastomers.
Nat Commun. 2013;4:1739. doi: 10.1038/ncomms2772.
5
Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.
PLoS One. 2012;7(2):e31598. doi: 10.1371/journal.pone.0031598. Epub 2012 Feb 15.
6
A model for the stretch-mediated enzymatic degradation of silk fibers.
J Mech Behav Biomed Mater. 2010 Oct;3(7):538-47. doi: 10.1016/j.jmbbm.2010.06.008. Epub 2010 Jul 3.
7
Muscle performance in a soft-bodied terrestrial crawler: constitutive modelling of strain-rate dependency.
J R Soc Interface. 2008 Mar 6;5(20):349-62. doi: 10.1098/rsif.2007.1076.

本文引用的文献

2
Passive mechanical properties of legs from running insects.
J Exp Biol. 2006 Apr;209(Pt 8):1502-15. doi: 10.1242/jeb.02146.
3
Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
Biol Cybern. 2004 Aug;91(2):76-90. doi: 10.1007/s00422-004-0498-y. Epub 2004 Aug 21.
5
Thermoelastic properties of several biological systems.
Proc R Soc Lond B Biol Sci. 1952 Jul 10;139(897):499-505; passim. doi: 10.1098/rspb.1952.0025.
6
Muscle mechanics and neuromuscular control.
J Biomech. 2003 Jul;36(7):1031-8. doi: 10.1016/s0021-9290(03)00036-8.
7
Dynamic stabilization of rapid hexapedal locomotion.
J Exp Biol. 2002 Sep;205(Pt 18):2803-23. doi: 10.1242/jeb.205.18.2803.
8
Supercontracting muscle: producing tension over extreme muscle lengths.
J Exp Biol. 2002 Aug;205(Pt 15):2167-73. doi: 10.1242/jeb.205.15.2167.
9
Changes in contractile properties of skeletal muscle during developmentally programmed atrophy and death.
Am J Physiol Cell Physiol. 2002 Jun;282(6):C1270-7. doi: 10.1152/ajpcell.01275.2000.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验