Suppr超能文献

软体陆地爬行生物的肌肉性能:应变率依赖性的本构模型

Muscle performance in a soft-bodied terrestrial crawler: constitutive modelling of strain-rate dependency.

作者信息

Dorfmann A Luis, Woods William A, Trimmer Barry A

机构信息

Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

J R Soc Interface. 2008 Mar 6;5(20):349-62. doi: 10.1098/rsif.2007.1076.

Abstract

Experimental data on the passive mechanical properties of the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, are reported. The stress-deformation response of the Manduca muscle is shown to be nonlinear pseudo-elastic, capable of large deformations and subject to stress softening during initial loading cycles. The muscle passive mechanical properties also depend on multiple time-dependent processes. In particular, we show new experimental data from cyclic loading tests of an unstimulated muscle with constant maximum stretch and different, constant engineering strain rates. Then, on the basis of these data a constitutive model is derived to reproduce the main characteristics of this behaviour. In formulating the constitutive model, we consider the muscle as a complex macromolecular structure with fibrous components at numerous size scales. The model uses a phenomenological approach to account for different mechanisms by which passive force changes during applied deformation and how the muscle properties recover after unloading.

摘要

本文报告了烟草天蛾幼虫腹内外侧肌肉被动力学特性的实验数据。烟草天蛾肌肉的应力-变形响应表现为非线性伪弹性,能够承受大变形,并在初始加载循环中出现应力软化现象。肌肉的被动力学特性还取决于多个随时间变化的过程。具体而言,我们展示了在恒定最大拉伸和不同恒定工程应变率下,对未受刺激肌肉进行循环加载测试的新实验数据。然后,基于这些数据推导了一个本构模型,以再现这种行为的主要特征。在构建本构模型时,我们将肌肉视为具有多个尺寸尺度纤维成分的复杂大分子结构。该模型采用唯象学方法,以解释在施加变形过程中被动力变化的不同机制,以及卸载后肌肉特性如何恢复。

相似文献

1
Muscle performance in a soft-bodied terrestrial crawler: constitutive modelling of strain-rate dependency.
J R Soc Interface. 2008 Mar 6;5(20):349-62. doi: 10.1098/rsif.2007.1076.
2
A constitutive model for muscle properties in a soft-bodied arthropod.
J R Soc Interface. 2007 Apr 22;4(13):257-69. doi: 10.1098/rsif.2006.0163.
4
The biomechanical and neural control of hydrostatic limb movements in Manduca sexta.
J Exp Biol. 2004 Aug;207(Pt 17):3043-53. doi: 10.1242/jeb.01136.
5
Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument.
J Theor Biol. 2009 Feb 7;256(3):447-57. doi: 10.1016/j.jtbi.2008.10.018. Epub 2008 Oct 29.
6
The substrate as a skeleton: ground reaction forces from a soft-bodied legged animal.
J Exp Biol. 2010 Apr;213(Pt 7):1133-42. doi: 10.1242/jeb.037796.
7
Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae.
Biol Bull. 2007 Apr;212(2):130-42. doi: 10.2307/25066590.
9
Motor patterns associated with crawling in a soft-bodied arthropod.
J Exp Biol. 2010 Jul 1;213(Pt 13):2303-9. doi: 10.1242/jeb.039206.
10
Indirect actuation reduces flight power requirements in via elastic energy exchange.
J R Soc Interface. 2019 Dec;16(161):20190543. doi: 10.1098/rsif.2019.0543. Epub 2019 Dec 18.

引用本文的文献

1
Competition between elasticity and adhesion in caterpillar locomotion.
J R Soc Interface. 2025 Apr;22(225):20240703. doi: 10.1098/rsif.2024.0703. Epub 2025 Apr 23.
2
Conductive and elastic bottlebrush elastomers for ultrasoft electronics.
Nat Commun. 2023 Feb 4;14(1):623. doi: 10.1038/s41467-023-36214-8.
3
A neuromechanical model for Drosophila larval crawling based on physical measurements.
BMC Biol. 2022 Jun 15;20(1):130. doi: 10.1186/s12915-022-01336-w.
4
A pseudo-anelastic model for stress softening in liquid crystal elastomers.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200558. doi: 10.1098/rspa.2020.0558. Epub 2020 Nov 4.
5
Caterpillar Climbing: Robust, Tension-Based Omni-Directional Locomotion.
J Insect Sci. 2018 May 1;18(3). doi: 10.1093/jisesa/iey055.
6
Application of Acoustoelasticity to Evaluate Nonlinear Modulus in Ex Vivo Kidneys.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Feb;65(2):188-200. doi: 10.1109/TUFFC.2017.2781654.
7
Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion.
J R Soc Interface. 2010 Apr 6;7(45):613-21. doi: 10.1098/rsif.2009.0240. Epub 2009 Sep 23.

本文引用的文献

2
Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae.
Biol Bull. 2007 Apr;212(2):130-42. doi: 10.2307/25066590.
3
A constitutive model for muscle properties in a soft-bodied arthropod.
J R Soc Interface. 2007 Apr 22;4(13):257-69. doi: 10.1098/rsif.2006.0163.
4
A mechanical model for adjustable passive stiffness in rabbit detrusor.
J Appl Physiol (1985). 2006 Oct;101(4):1189-98. doi: 10.1152/japplphysiol.00396.2006. Epub 2006 Jun 15.
5
The molecular elasticity of the insect flight muscle proteins projectin and kettin.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4451-6. doi: 10.1073/pnas.0509016103. Epub 2006 Mar 14.
6
Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
J Gen Physiol. 2005 Nov;126(5):461-80. doi: 10.1085/jgp.200509364. Epub 2005 Oct 17.
7
The biomechanical and neural control of hydrostatic limb movements in Manduca sexta.
J Exp Biol. 2004 Aug;207(Pt 17):3043-53. doi: 10.1242/jeb.01136.
8
Tissue growth and remodeling.
Annu Rev Biomed Eng. 2004;6:77-107. doi: 10.1146/annurev.bioeng.6.040803.140250.
9
The giant protein titin: a major player in myocardial mechanics, signaling, and disease.
Circ Res. 2004 Feb 20;94(3):284-95. doi: 10.1161/01.RES.0000117769.88862.F8.
10
Non-cross-bridge calcium-dependent stiffness in frog muscle fibers.
Am J Physiol Cell Physiol. 2004 Jun;286(6):C1353-7. doi: 10.1152/ajpcell.00493.2003. Epub 2004 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验