Jeltes T, McNamara J M, Hogervorst W, Vassen W, Krachmalnicoff V, Schellekens M, Perrin A, Chang H, Boiron D, Aspect A, Westbrook C I
Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
Nature. 2007 Jan 25;445(7126):402-5. doi: 10.1038/nature05513.
Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in light emitted by a chaotic source, highlighting the importance of two-photon correlations and stimulating the development of modern quantum optics. The quantum interpretation of bunching relies on the constructive interference between amplitudes involving two indistinguishable photons, and its additive character is intimately linked to the Bose nature of photons. Advances in atom cooling and detection have led to the observation and full characterization of the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions should reveal an antibunching effect (a tendency to avoid each other). Antibunching of fermions is associated with destructive two-particle interference, and is related to the Pauli principle forbidding more than one identical fermion to occupy the same quantum state. Here we report an experimental comparison of the fermionic and bosonic HBT effects in the same apparatus, using two different isotopes of helium: (3)He (a fermion) and 4He (a boson). Ordinary attractive or repulsive interactions between atoms are negligible; therefore, the contrasting bunching and antibunching behaviour that we observe can be fully attributed to the different quantum statistics of each atomic species. Our results show how atom-atom correlation measurements can be used to reveal details in the spatial density or momentum correlations in an atomic ensemble. They also enable the direct observation of phase effects linked to the quantum statistics of a many-body system, which may facilitate the study of more exotic situations.
五十年前,汉伯里·布朗和蒂斯(HBT)发现了混沌光源发出的光中的光子聚束现象,突出了双光子关联的重要性,并推动了现代量子光学的发展。聚束的量子解释依赖于涉及两个不可区分光子的振幅之间的相长干涉,其相加特性与光子的玻色性质密切相关。原子冷却和探测技术的进步使得玻色子原子的HBT效应的原子类似物得以被观测和全面表征。相比之下,费米子应该会表现出反聚束效应(相互避开的趋势)。费米子的反聚束与双粒子相消干涉有关,并且与泡利原理相关,该原理禁止多个相同的费米子占据相同的量子态。在此,我们报告在同一装置中对费米子和玻色子的HBT效应进行的实验比较,使用两种不同的氦同位素:³He(一种费米子)和⁴He(一种玻色子)。原子之间通常的吸引或排斥相互作用可忽略不计;因此,我们观察到的对比鲜明的聚束和反聚束行为可完全归因于每种原子种类不同的量子统计特性。我们的结果展示了原子 - 原子关联测量如何能够用于揭示原子系综中空间密度或动量关联的细节。它们还使得能够直接观测与多体系统的量子统计相关的相位效应,这可能有助于研究更奇特的情形。