Suppr超能文献

相关二元终点多重性调整策略的统计效能

Statistical power of multiplicity adjustment strategies for correlated binary endpoints.

作者信息

Leon Andrew C, Heo Moonseong, Teres Jedediah J, Morikawa Toshihiko

机构信息

Department of Psychiatry, Weill Cornell Medical College, Box 140, 525 East 68th Street, New York, NY 10021, USA.

出版信息

Stat Med. 2007 Apr 15;26(8):1712-23. doi: 10.1002/sim.2795.

Abstract

There are numerous alternatives to the so-called Bonferroni adjustment to control for familywise Type I error among multiple tests. Yet, for the most part, these approaches disregard the correlation among endpoints. This can prove to be a conservative hypothesis testing strategy if the null hypothesis is false. The James procedure was proposed to account for the correlation structure among multiple continuous endpoints. Here, a simulation study evaluates the statistical power of the Hochberg and James adjustment strategies relative to that of the Bonferroni approach when used for multiple correlated binary variables. The simulations demonstrate that relative to the Bonferroni approach, neither alternative sacrifices power. The Hochberg approach has more statistical power for rho<or=0.50; whereas the James procedure provides more statistical power with higher rho, the common correlation among the multiple outcomes. A study of gender differences in New York City homicides is used to illustrate the approaches.

摘要

在多重检验中,有许多替代所谓的邦费罗尼校正来控制家族性I型错误的方法。然而,在大多数情况下,这些方法忽略了各终点之间的相关性。如果原假设为假,这可能被证明是一种保守的假设检验策略。詹姆斯程序被提出来考虑多个连续终点之间的相关结构。在此,一项模拟研究评估了霍赫贝格和詹姆斯校正策略相对于邦费罗尼方法在用于多个相关二元变量时的统计功效。模拟表明,相对于邦费罗尼方法,这两种替代方法都不会牺牲功效。当相关系数ρ≤0.50时,霍赫贝格方法具有更大的统计功效;而随着多重结局之间常见的相关系数ρ增大,詹姆斯程序具有更大的统计功效。一项关于纽约市杀人案中性别差异的研究被用来阐述这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验