Roux Celine, Gresh Nohad, Perera Lalith E, Piquemal Jean-Philip, Salmon Laurent
Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS-UMR 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, Université Paris-Sud XI, 15 rue Georges Clémenceau, 91405 Orsay, France.
J Comput Chem. 2007 Apr 15;28(5):938-57. doi: 10.1002/jcc.20586.
Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5PAA), in which the hydroxamate moiety is replaced by a carboxylate one, is devoid of inhibitory potency. Subsequent biochemical studies showed that in its PMI complex, 5PAH binds Zn(II) through its hydroxamate moiety rather than through its phosphate. These results have stimulated the present theoretical investigation in which we resort to the SIBFA polarizable molecular mechanics procedure to unravel the structural and energetical aspects of 5PAH and 5PAA binding to a 164-residue model of PMI. Consistent with the experimental results, our theoretical studies indicate that the complexation of PMI by 5PAH is much more favorable than by 5PAA, and that in the 5PAH complex, Zn(II) ligation by hydroxamate is much more favorable than by phosphate. Validations by parallel quantum-chemical computations on model of the recognition site extracted from the PMI-inhibitor complexes, and totaling up to 140 atoms, showed the values of the SIBFA intermolecular interaction energies in such models to be able to reproduce the quantum-chemistry ones with relative errors < 3%. On the basis of the PMI-5PAH SIBFA energy-minimized structure, we report the first hypothesis of a detailed view of the active site of the zinc PMI complexed to the high-energy intermediate analogue inhibitor, which allows us to identify active site residues likely involved in the proton transfer between the two adjacent carbons of the substrates.
I型磷酸甘露糖异构酶(PMI)是一种锌依赖性金属酶,参与将D-果糖6-磷酸异构化为D-甘露糖6-磷酸的过程。我们其中一个实验室最近设计并合成了5-磷酸-D-阿拉伯糖异羟肟酸酯(5PAH),一种对PMI具有纳摩尔亲和力的抑制剂(鲁克斯等人,《生物化学》,2004年,43卷,2926页)。相比之下,5-磷酸-D-阿拉伯糖酸(5PAA),其中异羟肟酸部分被羧酸盐部分取代,则没有抑制活性。随后的生化研究表明,在其PMI复合物中,5PAH通过其异羟肟酸部分而非磷酸部分结合Zn(II)。这些结果激发了当前的理论研究,我们采用SIBFA可极化分子力学方法来阐明5PAH和5PAA与PMI的164个残基模型结合的结构和能量方面。与实验结果一致,我们的理论研究表明,5PAH与PMI的络合比5PAA更有利,并且在5PAH复合物中,异羟肟酸对Zn(II)的配位比磷酸更有利。对从PMI-抑制剂复合物中提取的识别位点模型进行的平行量子化学计算验证,该模型总计140个原子,结果表明此类模型中SIBFA分子间相互作用能的值能够以相对误差<3%的精度重现量子化学计算值。基于PMI-5PAH的SIBFA能量最小化结构,我们首次提出了与高能中间体类似物抑制剂络合的锌PMI活性位点详细视图的假设,这使我们能够识别可能参与底物两个相邻碳之间质子转移的活性位点残基。