Suppr超能文献

基于量子启发的 SIBFA 多体极化力场的开发:实现凝聚相分子动力学模拟。

Development of the Quantum-Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed-Phase Molecular Dynamics Simulations.

机构信息

LCT, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France.

Department of Chemistry, University of North Texas, Denton, Texas 76201, United States.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):3607-3621. doi: 10.1021/acs.jctc.2c00029. Epub 2022 May 16.

Abstract

We present the extension of the Sum of Interactions Between Fragments Computed (SIBFA) many-body polarizable force field to condensed-phase molecular dynamics (MD) simulations. The quantum-inspired SIBFA procedure is grounded on simplified integrals obtained from localized molecular orbital theory and achieves full separability of its intermolecular potential. It embodies long-range multipolar electrostatics (up to quadrupole) coupled to a short-range penetration correction (up to charge-quadrupole), exchange repulsion, many-body polarization, many-body charge transfer/delocalization, exchange dispersion, and dispersion (up to C). This enables the reproduction of all energy contributions of symmetry-adapted perturbation theory (SAPT(DFT)) gas-phase reference computations. The SIBFA approach has been integrated within the Tinker-HP massively parallel MD package. To do so, all SIBFA energy gradients have been derived and the approach has been extended to enable periodic boundary conditions simulations using smooth particle mesh Ewald. This novel implementation also notably includes a computationally tractable simplification of the many-body charge transfer/delocalization contribution. As a proof of concept, we perform a first computational experiment defining a water model fitted on a limited set of SAPT(DFT) data. SIBFA is shown to enable a satisfactory reproduction of both gas-phase energetic contributions and condensed-phase properties highlighting the importance of its physically motivated functional form.

摘要

我们提出了将碎片间相互作用和计算总和(SIBFA)多体极化力场扩展到凝聚相分子动力学(MD)模拟。受量子启发的 SIBFA 程序基于简化的积分,这些积分是从局域分子轨道理论中获得的,并实现了其分子间势能的完全可分性。它体现了远程多极静电(高达四极)与短程穿透校正(高达电荷四极)、交换排斥、多体极化、多体电荷转移/离域、交换色散和色散(高达 C)相结合。这使得可以重现对称适应微扰理论(SAPT(DFT))气相参考计算的所有能量贡献。SIBFA 方法已集成在 Tinker-HP 大规模并行 MD 软件包中。为此,我们推导出了所有 SIBFA 能量梯度,并扩展了该方法以使用平滑粒子网格 Ewald 来实现周期性边界条件模拟。这种新的实现还显著包括对多体电荷转移/离域贡献的可计算简化。作为概念验证,我们进行了第一次计算实验,定义了一个适用于有限 SAPT(DFT)数据集的水模型。结果表明,SIBFA 能够令人满意地再现气相能量贡献和凝聚相性质,突出了其物理驱动的功能形式的重要性。

相似文献

1
Development of the Quantum-Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed-Phase Molecular Dynamics Simulations.
J Chem Theory Comput. 2022 Jun 14;18(6):3607-3621. doi: 10.1021/acs.jctc.2c00029. Epub 2022 May 16.
5
Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters.
J Comput Chem. 2014 Nov 5;35(29):2096-106. doi: 10.1002/jcc.23724. Epub 2014 Sep 11.
6
Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
Acc Chem Res. 2021 Oct 5;54(19):3679-3690. doi: 10.1021/acs.accounts.1c00387. Epub 2021 Sep 22.
7
Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field.
J Chem Theory Comput. 2010 Jul 13;6(7):2059-2070. doi: 10.1021/ct100091j.
9
Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field.
J Phys Chem B. 2022 Nov 3;126(43):8813-8826. doi: 10.1021/acs.jpcb.2c04454. Epub 2022 Oct 21.

引用本文的文献

1
Analyzing Many-Body Charge Transfer Effects With the Fragment Molecular Orbital Method.
J Comput Chem. 2025 May 15;46(13):e70128. doi: 10.1002/jcc.70128.
2
What is the Exchange Repulsion Energy? Insight by Partitioning into Physically Meaningful Contributions.
Chemphyschem. 2025 Mar 3;26(5):e202400887. doi: 10.1002/cphc.202400887. Epub 2024 Dec 18.
3
Toward Gaussian Process Regression Modeling of a Urea Force Field.
J Phys Chem A. 2024 Oct 3;128(39):8551-8560. doi: 10.1021/acs.jpca.4c04117. Epub 2024 Sep 20.
4
Exploring Holy Basil's Bioactive Compounds for T2DM Treatment: Docking and Molecular Dynamics Simulations with Human Omentin-1.
Cell Biochem Biophys. 2025 Mar;83(1):793-810. doi: 10.1007/s12013-024-01511-6. Epub 2024 Sep 11.
7
Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines.
Annu Rev Biophys. 2023 May 9;52:525-551. doi: 10.1146/annurev-biophys-111622-091140. Epub 2023 Feb 15.
8
Construction of a Gaussian Process Regression Model of Formamide for Use in Molecular Simulations.
J Phys Chem A. 2023 Feb 23;127(7):1702-1714. doi: 10.1021/acs.jpca.2c06566. Epub 2023 Feb 9.
9
Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water.
J Chem Theory Comput. 2022 Sep 13;18(9):5577-5588. doi: 10.1021/acs.jctc.2c00311. Epub 2022 Aug 8.

本文引用的文献

1
Stochastic Evaluation of Many-Body van der Waals Energies in Large Complex Systems.
J Chem Theory Comput. 2022 Mar 8;18(3):1633-1645. doi: 10.1021/acs.jctc.1c01291. Epub 2022 Feb 8.
3
Polarizable Water Potential Derived from a Model Electron Density.
J Chem Theory Comput. 2021 Nov 9;17(11):7056-7084. doi: 10.1021/acs.jctc.1c00628. Epub 2021 Oct 26.
4
Nuclear Quantum Effects in Liquid Water at Near Classical Computational Cost Using the Adaptive Quantum Thermal Bath.
J Phys Chem Lett. 2021 Sep 2;12(34):8285-8291. doi: 10.1021/acs.jpclett.1c01722. Epub 2021 Aug 24.
5
Assessment of SAPT and Supermolecular EDA Approaches for the Development of Separable and Polarizable Force Fields.
J Chem Theory Comput. 2021 May 11;17(5):2759-2774. doi: 10.1021/acs.jctc.0c01337. Epub 2021 Apr 20.
7
Quantum-Chemistry Based Design of Halobenzene Derivatives With Augmented Affinities for the HIV-1 Viral G/C Base-Pair.
Front Chem. 2020 Jun 19;8:440. doi: 10.3389/fchem.2020.00440. eCollection 2020.
9
Accurate Biomolecular Simulations Account for Electronic Polarization.
Front Mol Biosci. 2019 Dec 4;6:143. doi: 10.3389/fmolb.2019.00143. eCollection 2019.
10
Implementation of Geometry-Dependent Charge Flux into the Polarizable AMOEBA+ Potential.
J Phys Chem Lett. 2020 Jan 16;11(2):419-426. doi: 10.1021/acs.jpclett.9b03489. Epub 2019 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验