Suppr超能文献

植物螯合肽合酶在谷胱甘肽共轭物分解代谢中的作用。

Function of phytochelatin synthase in catabolism of glutathione-conjugates.

作者信息

Blum Ralph, Beck Andreas, Korte Arthur, Stengel Anna, Letzel Thomas, Lendzian Klaus, Grill Erwin

机构信息

Lehrstuhl für Botanik, Technische Universtät München, D-85350 Freising, Germany.

出版信息

Plant J. 2007 Feb;49(4):740-9. doi: 10.1111/j.1365-313X.2006.02993.x. Epub 2007 Jan 23.

Abstract

Detoxification of xenobiotic compounds and heavy metals is a pivotal capacity of organisms, in which glutathione (GSH) plays an important role. In plants, electrophilic herbicides are conjugated to the thiol group of GSH, and heavy metal ions form complexes as thiolates with GSH-derived phytochelatins (PCs). In both detoxification processes of plants, phytochelatin synthase (PCS) emerges as a key player. The enzyme is activated by heavy metal ions and catalyzes PC formation from GSH by transferring glutamylcysteinyl residues (gamma-EC) onto GSH. In this study with Arabidopsis, we show that PCS plays a role in the plant-specific catabolism of glutathione conjugates (GS-conjugates). In contrast to animals, breakdown of GS-conjugates in plants can be initiated by cleavage of the carboxyterminal glycine residue that leads to the generation of the corresponding gamma-EC-conjugate. We used the xenobiotic bimane in order to follow GS-conjugate turnover. Functional knockout of the two PCS of Arabidopsis, AtPCS1 and AtPCS2, revealed that AtPCS1 provides a major activity responsible for conversion of the fluorescent bimane-GS-conjugate (GS-bimane) into gamma-EC-bimane. AtPCS1 deficiency resulted in a gamma-EC-bimane deficiency. Transfection of PCS-deficient cells with AtPCS1 recovered gamma-EC-bimane levels. The level of the gamma-EC-bimane conjugate was enhanced several-fold in the presence of Cd2+ ions in the wild type, but not in the PCS-deficient double mutant, consistent with a PCS-catalyzed GS-conjugate turnover. Thus AtPCS1 has two cellular functions: mediating both heavy metal tolerance and GS-conjugate degradation.

摘要

外源性化合物和重金属的解毒是生物体的一项关键能力,其中谷胱甘肽(GSH)发挥着重要作用。在植物中,亲电子除草剂与GSH的硫醇基团结合,重金属离子与GSH衍生的植物螯合肽(PCs)形成硫醇盐络合物。在植物的这两种解毒过程中,植物螯合肽合酶(PCS)都是关键参与者。该酶被重金属离子激活,并通过将谷氨酰半胱氨酰残基(γ-EC)转移到GSH上催化由GSH形成PC。在这项对拟南芥的研究中,我们表明PCS在谷胱甘肽共轭物(GS-共轭物)的植物特异性分解代谢中发挥作用。与动物不同,植物中GS-共轭物的分解可通过羧基末端甘氨酸残基的裂解启动,从而导致相应的γ-EC-共轭物的生成。我们使用外源性双硫腙来追踪GS-共轭物的周转。对拟南芥的两种PCS(AtPCS1和AtPCS2)进行功能敲除,结果表明AtPCS1提供了将荧光双硫腙-GS-共轭物(GS-双硫腙)转化为γ-EC-双硫腙的主要活性。AtPCS1缺陷导致γ-EC-双硫腙缺乏。用AtPCS1转染PCS缺陷细胞可恢复γ-EC-双硫腙水平。在野生型中,γ-EC-双硫腙共轭物的水平在Cd2+离子存在下提高了几倍,但在PCS缺陷的双突变体中则没有,这与PCS催化的GS-共轭物周转一致。因此,AtPCS1具有两种细胞功能:介导重金属耐受性和GS-共轭物降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验