Technische Universität München, Lehrstuhl für Botanik, D-85354 Freising, Germany.
Plant Physiol. 2010 May;153(1):159-69. doi: 10.1104/pp.109.149922. Epub 2010 Mar 19.
Glutathionylation of compounds is an important reaction in the detoxification of electrophilic xenobiotics and in the biosynthesis of endogenous molecules. The glutathione conjugates (GS conjugates) are further processed by peptidic cleavage reactions. In animals and plants, gamma-glutamyl transpeptidases initiate the turnover by removal of the glutamate residue from the conjugate. Plants have a second route leading to the formation of gamma-glutamylcysteinyl (gamma-GluCys) conjugates. Phytochelatin synthase (PCS) is well known to mediate the synthesis of heavy metal-binding phytochelatins. In addition, the enzyme is also able to catabolize GS conjugates to the gamma-GluCys derivative. In this study, we addressed the cellular compartmentalization of PCS and its role in the plant-specific gamma-GluCys conjugate pathway in Arabidopsis (Arabidopsis thaliana). Localization studies of both Arabidopsis PCS revealed a ubiquitous presence of AtPCS1 in Arabidopsis seedlings, while AtPCS2 was only detected in the root tip. A functional AtPCS1:eGFP (enhanced green fluorescent protein) fusion protein was localized to the cytosolic compartment. Inhibition of the vacuolar import of GS-bimane conjugate via azide treatment resulted in both a strong accumulation of gamma-GluCys-bimane and a massive increase of the cellular cysteine to GS-bimane ratio, which was not observed in PCS-deficient lines. These findings support a cytosolic action of PCS. Analysis of a triple mutant deficient in both Arabidopsis PCS and vacuolar gamma-glutamyl transpeptidase GGT4 is consistent with earlier observations of an efficient sequestration of GS conjugates into the vacuole and the requirement of GGT4 for their turnover. Hence, PCS contributes specifically to the cytosolic turnover of GS conjugates, and AtPCS1 plays the prominent role. We discuss a potential function of PCS in the cytosolic turnover of GS conjugates.
谷胱甘肽化是一种重要的反应,它在解毒亲电异源生物和生物合成内源性分子中起着重要作用。谷胱甘肽结合物(GS 结合物)通过肽裂解反应进一步处理。在动物和植物中,γ-谷氨酰转肽酶通过从结合物中去除谷氨酸残基来启动周转率。植物有第二条途径导致γ-谷氨酰半胱氨酸(γ-GluCys)结合物的形成。植物螯合肽合酶(PCS)介导重金属结合植物螯合肽的合成是众所周知的。此外,该酶还能够将 GS 结合物代谢为γ-GluCys 衍生物。在这项研究中,我们研究了 PCS 的细胞区室化及其在拟南芥(Arabidopsis thaliana)植物特异性γ-GluCys 结合物途径中的作用。对两种拟南芥 PCS 的定位研究表明,AtPCS1 在拟南芥幼苗中普遍存在,而 AtPCS2 仅在根尖检测到。AtPCS1:eGFP(增强型绿色荧光蛋白)融合蛋白的功能定位到细胞质区室。通过叠氮化物处理抑制 GS-双马来酰亚胺结合物的液泡导入,导致γ-GluCys-双马来酰亚胺的强烈积累和细胞半胱氨酸与 GS-双马来酰亚胺的比率的大量增加,在 PCS 缺陷型系中未观察到这种情况。这些发现支持 PCS 的细胞质作用。分析缺乏拟南芥 PCS 和液泡γ-谷氨酰转肽酶 GGT4 的三重突变体与早期观察到的 GS 结合物有效隔离到液泡中以及 GGT4 对其周转率的要求一致。因此,PCS 特别有助于 GS 结合物的细胞质周转率,而 AtPCS1 发挥主要作用。我们讨论了 PCS 在 GS 结合物细胞质周转率中的潜在功能。