Khandelia Himanshu, Kaznessis Yiannis N
Department of Chemical Engineering and Materials Science and University of Minnesota, 421, Washington Avenue SE, Minneapolis, MN 55455, USA.
Biochim Biophys Acta. 2007 Mar;1768(3):509-20. doi: 10.1016/j.bbamem.2006.11.015. Epub 2006 Dec 15.
All atom molecular dynamics simulations of the 18-residue beta-hairpin antimicrobial peptide protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR-NH(2)) in a fully hydrated dilauroylphosphatidylcholine (DLPC) lipid bilayer have been implemented. The goal of the reported work is to investigate the structure of the peptide in a membrane environment (previously solved only in solution [R.L. Fahrner, T. Dieckmann, S.S.L. Harwig, R.I. Lehrer, D. Eisenberg, J. Feigon, Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry and Biology, 3 (1996) 543-550]), and to delineate specific peptide-membrane interactions which are responsible for the peptide's membrane binding properties. A novel, previously unknown, "kick" shaped conformation of the peptide was detected, where a bend at the C-terminal beta-strand of the peptide caused the peptide backbone at residues 16-18 to extend perpendicular to the beta-hairpin plane. This bend was driven by a highly persistent hydrogen-bond between the polar peptide side-chain of TYR7 and the unshielded backbone carbonyl oxygen atom of GLY17. The H-bond formation relieves the unfavorable free energy of insertion of polar groups into the hydrophobic membrane core. PG-1 was anchored to the membrane by strong electrostatic binding of the protonated N-terminus of the peptide to the lipid head group phosphate anions. The orientation of the peptide in the membrane, and its influence on bilayer structural and dynamic properties are in excellent agreement with solid state NMR measurements [S. Yamaguchi, T. Hong, A. Waring, R.I. Lehrer, M. Hong, Solid-State NMR Investigations of Peptide-Lipid Interaction and Orientation of a b-Sheet Antimicrobial Peptide, Protegrin, Biochemistry, 41 (2002) 9852-9862]. Importantly, two simulations which started from different initial orientations of the peptide converged to the same final equilibrium orientation of the peptide relative to the bilayer. The kick-shaped conformation was observed only in one of the two simulations.
已对18个残基的β-发夹抗菌肽protegrin-1(PG-1,RGGRLCYCRRRFCVCVGR-NH₂)在完全水合的二月桂酰磷脂酰胆碱(DLPC)脂质双层中进行了全原子分子动力学模拟。所报道工作的目标是研究该肽在膜环境中的结构(此前仅在溶液中解析过 [R.L. Fahrner, T. Dieckmann, S.S.L. Harwig, R.I. Lehrer, D. Eisenberg, J. Feigon, Protegrin-1的溶液结构,一种来自猪白细胞的广谱抗菌肽。《化学生物学》,3 (1996) 543 - 550]),并描绘导致该肽具有膜结合特性的特定肽 - 膜相互作用。检测到该肽呈现出一种新颖的、此前未知的“踢”形构象,其中肽的C端β链处的一个弯曲使得16 - 18位残基处的肽主链垂直于β-发夹平面延伸。这种弯曲是由TYR7的极性肽侧链与GLY17未被屏蔽的主链羰基氧原子之间高度持久的氢键驱动的。氢键的形成缓解了极性基团插入疏水膜核心所带来的不利自由能。PG-1通过肽的质子化N端与脂质头部磷酸阴离子的强静电结合而锚定在膜上。该肽在膜中的取向及其对双层结构和动力学性质的影响与固态核磁共振测量结果 [S. Yamaguchi, T. Hong, A. Waring, R.I. Lehrer, M. Hong, 肽 - 脂质相互作用及β-折叠抗菌肽protegrin取向的固态核磁共振研究,《生物化学》,41 (2002) 9852 - 9862] 高度一致。重要的是,从肽的不同初始取向开始的两个模拟收敛到了该肽相对于双层的相同最终平衡取向。仅在两个模拟中的一个中观察到了“踢”形构象。