Hayton Paul, Utete Simukai, King Dennis, King Steve, Anuzis Paul, Tarassenko Lionel
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):493-514. doi: 10.1098/rsta.2006.1931.
Novelty detection requires models of normality to be learnt from training data known to be normal. The first model considered in this paper is a static model trained to detect novel events associated with changes in the vibration spectra recorded from a jet engine. We describe how the distribution of energy across the harmonics of a rotating shaft can be learnt by a support vector machine model of normality. The second model is a dynamic model partially learnt from data using an expectation-maximization-based method. This model uses a Kalman filter to fuse performance data in order to characterize normal engine behaviour. Deviations from normal operation are detected using the normalized innovations squared from the Kalman filter.
异常检测需要从已知为正常的训练数据中学习正常模型。本文考虑的第一个模型是一个静态模型,它经过训练以检测与喷气发动机记录的振动光谱变化相关的新事件。我们描述了如何通过一个正常支持向量机模型来学习旋转轴各谐波的能量分布。第二个模型是一个动态模型,它使用基于期望最大化的方法从数据中部分学习。该模型使用卡尔曼滤波器融合性能数据,以表征发动机的正常行为。使用卡尔曼滤波器的归一化新息平方来检测与正常运行的偏差。