Suppr超能文献

广义玻恩溶剂模型中的二级结构偏差:来自显式和隐式溶剂化的构象系综与溶剂极化自由能的比较

Secondary structure bias in generalized Born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation.

作者信息

Roe Daniel R, Okur Asim, Wickstrom Lauren, Hornak Viktor, Simmerling Carlos

机构信息

Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, USA.

出版信息

J Phys Chem B. 2007 Feb 22;111(7):1846-57. doi: 10.1021/jp066831u. Epub 2007 Jan 27.

Abstract

The effects of the use of three generalized Born (GB) implicit solvent models on the thermodynamics of a simple polyalanine peptide are studied via comparing several hundred nanoseconds of well-converged replica exchange molecular dynamics (REMD) simulations using explicit TIP3P solvent to REMD simulations with the GB solvent models. It is found that when compared to REMD simulations using TIP3P the GB REMD simulations contain significant differences in secondary structure populations, most notably an overabundance of alpha-helical secondary structure. This discrepancy is explored via comparison of the differences in the electrostatic component of the free energy of solvation (DeltaDeltaG(pol)) between TIP3P (via thermodynamic Integration calculations), the GB models, and an implicit solvent model based on the Poisson equation (PE). The electrostatic components of the solvation free energies are calculated using each solvent model for four representative conformations of Ala10. Since the PE model is found to have the best performance with respect to reproducing TIP3P DeltaDeltaG(pol) values, effective Born radii from the GB models are compared to effective Born radii calculated with PE (so-called perfect radii), and significant and numerous deviations in GB radii from perfect radii are found in all GB models. The effect of these deviations on the solvation free energy is discussed, and it is shown that even when perfect radii are used the agreement of GB with TIP3P DeltaDeltaG(pol) values does not improve. This suggests a limit to the optimization of the effective Born radius calculation and that future efforts to improve the accuracy of GB models must extend beyond such optimizations.

摘要

通过比较几百纳秒收敛良好的使用显式TIP3P溶剂的副本交换分子动力学(REMD)模拟与使用广义玻恩(GB)溶剂模型的REMD模拟,研究了三种GB隐式溶剂模型对简单聚丙氨酸肽热力学的影响。结果发现,与使用TIP3P的REMD模拟相比,GB REMD模拟在二级结构种群上存在显著差异,最明显的是α-螺旋二级结构过多。通过比较TIP3P(通过热力学积分计算)、GB模型和基于泊松方程(PE)的隐式溶剂模型之间溶剂化自由能静电成分的差异(ΔΔG(pol))来探究这种差异。使用每种溶剂模型对Ala10的四种代表性构象计算溶剂化自由能的静电成分。由于发现PE模型在重现TIP3P ΔΔG(pol)值方面表现最佳,将GB模型的有效玻恩半径与用PE计算的有效玻恩半径(所谓的完美半径)进行比较,发现所有GB模型的GB半径与完美半径之间存在大量且显著的偏差。讨论了这些偏差对溶剂化自由能的影响,结果表明即使使用完美半径,GB与TIP3P ΔΔG(pol)值的一致性也没有改善。这表明有效玻恩半径计算的优化存在局限性,未来提高GB模型准确性的努力必须超越此类优化。

相似文献

2
Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
J Chem Theory Comput. 2015 Sep 8;11(9):4450-9. doi: 10.1021/acs.jctc.5b00483. Epub 2015 Aug 21.
3
Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.
4
Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization.
J Chem Theory Comput. 2015 Nov 10;11(11):5103-13. doi: 10.1021/acs.jctc.5b00620. Epub 2015 Oct 8.
5
Free energy landscape of protein folding in water: explicit vs. implicit solvent.
Proteins. 2003 Nov 1;53(2):148-61. doi: 10.1002/prot.10483.
6
Improved Generalized Born Solvent Model Parameters for Protein Simulations.
J Chem Theory Comput. 2013 Apr 9;9(4):2020-2034. doi: 10.1021/ct3010485.
7
Simulation of the folding equilibrium of alpha-helical peptides: a comparison of the generalized Born approximation with explicit solvent.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13934-9. doi: 10.1073/pnas.2232868100. Epub 2003 Nov 14.
8
Effective Born radii in the generalized Born approximation: the importance of being perfect.
J Comput Chem. 2002 Nov 15;23(14):1297-304. doi: 10.1002/jcc.10126.
9
Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.
J Comput Chem. 2017 Jun 15;38(16):1332-1341. doi: 10.1002/jcc.24734. Epub 2017 Apr 11.

引用本文的文献

1
Transferable Implicit Solvation via Contrastive Learning of Graph Neural Networks.
ACS Cent Sci. 2023 Nov 16;9(12):2286-2297. doi: 10.1021/acscentsci.3c01160. eCollection 2023 Dec 27.
3
Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks.
bioRxiv. 2023 Sep 12:2023.09.08.556923. doi: 10.1101/2023.09.08.556923.
6
Formation of extramembrane -strands controls dimerization of transmembrane helices in amyloid precursor protein C99.
Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2212207119. doi: 10.1073/pnas.2212207119. Epub 2022 Dec 20.
8
Systematic comparison and prediction of the effects of missense mutations on protein-DNA and protein-RNA interactions.
PLoS Comput Biol. 2021 Apr 19;17(4):e1008951. doi: 10.1371/journal.pcbi.1008951. eCollection 2021 Apr.
9
Exploring Protocols to Build Reservoirs to Accelerate Temperature Replica Exchange MD Simulations.
J Chem Theory Comput. 2020 Dec 8;16(12):7776-7799. doi: 10.1021/acs.jctc.0c00513. Epub 2020 Nov 3.
10
Mechanism of self/nonself-discrimination in Brassica self-incompatibility.
Nat Commun. 2020 Oct 1;11(1):4916. doi: 10.1038/s41467-020-18698-w.

本文引用的文献

1
Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field.
J Chem Theory Comput. 2005 May;1(3):484-93. doi: 10.1021/ct049834o.
4
Investigation of Salt Bridge Stability in a Generalized Born Solvent Model.
J Chem Theory Comput. 2006 Jan;2(1):115-27. doi: 10.1021/ct050183l.
5
Generalized Born model with a simple, robust molecular volume correction.
J Chem Theory Comput. 2007 Jan 1;3(1):156-169. doi: 10.1021/ct600085e.
6
Implicit solvent models.
Biophys Chem. 1999 Apr 5;78(1-2):1-20. doi: 10.1016/s0301-4622(98)00226-9.
8
Comparative study of generalized born models: Born radii and peptide folding.
J Phys Chem B. 2005 Feb 24;109(7):3008-22. doi: 10.1021/jp046307s.
9
Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1744-9. doi: 10.1073/pnas.0510549103. Epub 2006 Jan 30.
10
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验