Suppr超能文献

几种常见隐式溶剂模型在蛋白质-配体结合背景下的准确性比较及其实现方式

Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.

作者信息

Katkova E V, Onufriev A V, Aguilar B, Sulimov V B

机构信息

Dimonta, Ltd., Nagornaya Street 15, Bldg 8, Moscow, 117186, Russia; Research Computer Center, Lomonosov Moscow State University, Leninskie Gory 1,Bldg 4, Moscow, 119992, Russia.

Departments of Computer Science and Physics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.

出版信息

J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.

Abstract

In this study several commonly used implicit solvent models are compared with respect to their accuracy of estimating solvation energies of small molecules and proteins, as well as desolvation penalty in protein-ligand binding. The test set consists of 19 small proteins, 104 small molecules, and 15 protein-ligand complexes. We compared predicted hydration energies of small molecules with their experimental values; the results of the solvation and desolvation energy calculations for small molecules, proteins and protein-ligand complexes in water were also compared with Thermodynamic Integration calculations based on TIP3P water model and Amber12 force field. The following implicit solvent (water) models considered here are: PCM (Polarized Continuum Model implemented in DISOLV and MCBHSOLV programs), GB (Generalized Born method implemented in DISOLV program, S-GB, and GBNSR6 stand-alone version), COSMO (COnductor-like Screening Model implemented in the DISOLV program and the MOPAC package) and the Poisson-Boltzmann model (implemented in the APBS program). Different parameterizations of the molecules were examined: we compared MMFF94 force field, Amber12 force field and the quantum-chemical semi-empirical PM7 method implemented in the MOPAC package. For small molecules, all of the implicit solvent models tested here yield high correlation coefficients (0.87-0.93) between the calculated solvation energies and the experimental values of hydration energies. For small molecules high correlation (0.82-0.97) with the explicit solvent energies is seen as well. On the other hand, estimated protein solvation energies and protein-ligand binding desolvation energies show substantial discrepancy (up to 10kcal/mol) with the explicit solvent reference. The correlation of polar protein solvation energies and protein-ligand desolvation energies with the corresponding explicit solvent results is 0.65-0.99 and 0.76-0.96 respectively, though this difference in correlations is caused more by different parameterization and less by methods and indicates the need for further improvement of implicit solvent models parameterization. Within the same parameterization, various implicit methods give practically the same correlation with results obtained in explicit solvent model for ligands and proteins: e.g. correlation values of polar ligand solvation energies and the corresponding energies in the frame of explicit solvent were 0.953-0.966 for the APBS program, the GBNSR6 program and all models used in the DISOLV program. The DISOLV program proved to be on a par with the other used programs in the case of proteins and ligands solvation energy calculation. However, the solution of the Poisson-Boltzmann equation (APBS program) and Generalized Born method (implemented in the GBNSR6 program) proved to be the most accurate in calculating the desolvation energies of complexes.

摘要

在本研究中,比较了几种常用的隐式溶剂模型在估算小分子和蛋白质溶剂化能以及蛋白质-配体结合中去溶剂化罚分方面的准确性。测试集包括19个小蛋白质、104个小分子和15个蛋白质-配体复合物。我们将小分子的预测水合能与其实验值进行了比较;还将小分子、蛋白质和蛋白质-配体复合物在水中的溶剂化和去溶剂化能计算结果与基于TIP3P水模型和Amber12力场的热力学积分计算进行了比较。这里考虑的隐式溶剂(水)模型如下:PCM(在DISOLV和MCBHSOLV程序中实现的极化连续介质模型)、GB(在DISOLV程序中实现的广义玻恩方法、S-GB和GBNSR6独立版本)、COSMO(在DISOLV程序和MOPAC软件包中实现的类导体屏蔽模型)以及泊松-玻尔兹曼模型(在APBS程序中实现)。研究了分子的不同参数化:我们比较了MMFF94力场、Amber12力场以及MOPAC软件包中实现的量子化学半经验PM7方法。对于小分子,这里测试的所有隐式溶剂模型在计算的溶剂化能与水合能实验值之间都产生了较高的相关系数(0.87 - 0.93)。对于小分子,与显式溶剂能也有较高的相关性(0.82 - 0.97)。另一方面,估计的蛋白质溶剂化能和蛋白质-配体结合去溶剂化能与显式溶剂参考值存在显著差异(高达10千卡/摩尔)。极性蛋白质溶剂化能和蛋白质-配体去溶剂化能与相应显式溶剂结果的相关性分别为0.65 - 0.99和0.76 - 0.96,不过这种相关性差异更多是由不同的参数化引起的,而不是方法,这表明需要进一步改进隐式溶剂模型的参数化。在相同的参数化下,各种隐式方法与在显式溶剂模型中获得的配体和蛋白质结果具有几乎相同的相关性:例如,对于APBS程序、GBNSR6程序以及DISOLV程序中使用的所有模型,极性配体溶剂化能与显式溶剂框架中相应能量的相关值为0.953 - 0.966。在蛋白质和配体溶剂化能计算方面,DISOLV程序被证明与其他使用的程序相当。然而,在计算复合物的去溶剂化能时,泊松-玻尔兹曼方程(APBS程序)和广义玻恩方法(在GBNSR6程序中实现)被证明是最准确的。

相似文献

引用本文的文献

3
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.隐式溶剂中结合自由能估计的最佳介电边界
J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10.
6
Computational Design of PDZ-Peptide Binding.PDZ 肽结合的计算设计。
Methods Mol Biol. 2021;2256:237-255. doi: 10.1007/978-1-0716-1166-1_14.

本文引用的文献

8
Building Water Models: A Different Approach.构建水模型:一种不同的方法。
J Phys Chem Lett. 2014 Nov 6;5(21):3863-3871. doi: 10.1021/jz501780a. Epub 2014 Oct 16.
10
Computational methods in drug discovery.药物发现中的计算方法。
Pharmacol Rev. 2013 Dec 31;66(1):334-95. doi: 10.1124/pr.112.007336. Print 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验