Suppr超能文献

激动剂的化学相互作用在控制α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体激活中的作用。

Role of the chemical interactions of the agonist in controlling alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation.

作者信息

Mankiewicz Kimberly A, Rambhadran Anu, Du Mei, Ramanoudjame Gomathi, Jayaraman Vasanthi

机构信息

Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030, USA.

出版信息

Biochemistry. 2007 Feb 6;46(5):1343-9. doi: 10.1021/bi062270l.

Abstract

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are the main excitatory neurotransmitter receptors in the mammalian central nervous system. Structures of the isolated ligand binding domain of this receptor have provided significant insight into the large-scale conformational changes, which when propagated to the channel segments leads to receptor activation. However, to establish the role of specific molecular interactions in controlling fine details such as the magnitude of the functional response, we have used a multiscale approach, where changes at specific moieties of the agonists have been studied by vibrational spectroscopy, while large-scale conformational changes have been studied using fluorescence resonance energy transfer (FRET) investigations. By exploiting the wide range of activations by the agonists, glutamate, kainate, and AMPA, for the wild type and Y450F and L650T mutants of the GluR2 subtype, and by using the multiscale investigation, we show that the strength of the interactions at the alpha-amine group of the agonist with the protein in all but one case tracks the extent of activation. Since the alpha-amine group forms bridging interactions at the cusp of the ligand binding cleft, this appears to be a critical interaction through which the agonist controls the extent of activation of the receptor.

摘要

α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体是哺乳动物中枢神经系统中的主要兴奋性神经递质受体。该受体分离的配体结合结构域的结构为大规模构象变化提供了重要见解,这种构象变化传播到通道片段时会导致受体激活。然而,为了确定特定分子相互作用在控制诸如功能反应幅度等细节方面的作用,我们采用了多尺度方法,其中通过振动光谱研究了激动剂特定部分的变化,同时使用荧光共振能量转移(FRET)研究了大规模构象变化。通过利用激动剂谷氨酸、海人酸和AMPA对GluR2亚型野生型以及Y450F和L650T突变体的广泛激活,并通过多尺度研究,我们表明,在除一种情况外的所有情况下,激动剂α-胺基团与蛋白质之间相互作用的强度与激活程度相关。由于α-胺基团在配体结合裂隙的尖端形成桥连相互作用,这似乎是激动剂控制受体激活程度的关键相互作用。

相似文献

5
On the mechanisms of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding to glutamate and kainate.
J Biol Chem. 2010 Apr 16;285(16):12334-43. doi: 10.1074/jbc.M109.086371. Epub 2010 Jan 28.
6
Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5736-41. doi: 10.1073/pnas.1037393100. Epub 2003 May 2.
7
Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors.
J Biol Chem. 2004 Jun 18;279(25):26346-50. doi: 10.1074/jbc.M403111200. Epub 2004 Apr 20.
8
Allosteric mechanism in AMPA receptors: a FRET-based investigation of conformational changes.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10473-10478. doi: 10.1073/pnas.0603225103. Epub 2006 Jun 22.
9
The loss of an electrostatic contact unique to AMPA receptor ligand binding domain 2 slows channel activation.
Biochemistry. 2012 May 15;51(19):4015-27. doi: 10.1021/bi3001837. Epub 2012 May 2.

引用本文的文献

1
Partial agonism in heteromeric GLUK2/GLUK5 kainate receptor.
Proteins. 2025 Jan;93(1):134-144. doi: 10.1002/prot.26565. Epub 2023 Aug 1.
2
Glutamate and Glycine Binding to the NMDA Receptor.
Structure. 2018 Jul 3;26(7):1035-1043.e2. doi: 10.1016/j.str.2018.05.004. Epub 2018 Jun 7.
3
Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations.
J Biol Chem. 2011 Oct 7;286(40):35257-66. doi: 10.1074/jbc.M111.269001. Epub 2011 Aug 16.
4
Conformational changes at the agonist binding domain of the N-methyl-D-aspartic acid receptor.
J Biol Chem. 2011 May 13;286(19):16953-7. doi: 10.1074/jbc.M111.224576. Epub 2011 Mar 24.
5
Subunit arrangement in N-methyl-D-aspartate (NMDA) receptors.
J Biol Chem. 2010 May 14;285(20):15296-15301. doi: 10.1074/jbc.M109.085035. Epub 2010 Mar 19.
6
On the mechanisms of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding to glutamate and kainate.
J Biol Chem. 2010 Apr 16;285(16):12334-43. doi: 10.1074/jbc.M109.086371. Epub 2010 Jan 28.
9
Mechanism of partial agonism at the GluR2 AMPA receptor: Measurements of lobe orientation in solution.
Biochemistry. 2008 Oct 7;47(40):10600-10. doi: 10.1021/bi800843c. Epub 2008 Sep 17.
10
LRET investigations of conformational changes in the ligand binding domain of a functional AMPA receptor.
Biochemistry. 2008 Sep 23;47(38):10027-32. doi: 10.1021/bi800690b. Epub 2008 Aug 30.

本文引用的文献

1
Allosteric mechanism in AMPA receptors: a FRET-based investigation of conformational changes.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10473-10478. doi: 10.1073/pnas.0603225103. Epub 2006 Jun 22.
2
Glutamate receptors at atomic resolution.
Nature. 2006 Mar 23;440(7083):456-62. doi: 10.1038/nature04709.
3
Evolution of glutamate interactions during binding to a glutamate receptor.
Nat Chem Biol. 2005 Nov;1(6):329-32. doi: 10.1038/nchembio738. Epub 2005 Sep 25.
4
6
Conformational changes in the ligand-binding domain of a functional ionotropic glutamate receptor.
J Biol Chem. 2005 Mar 11;280(10):8633-6. doi: 10.1074/jbc.C400590200. Epub 2005 Jan 4.
8
Ionotropic glutamate receptor recognition and activation.
Adv Protein Chem. 2004;68:313-49. doi: 10.1016/S0065-3233(04)68009-0.
9
Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors.
J Biol Chem. 2004 Jun 18;279(25):26346-50. doi: 10.1074/jbc.M403111200. Epub 2004 Apr 20.
10
Spectroscopic and kinetic methods for ligand-protein interactions of glutamate receptor.
Methods Enzymol. 2004;380:170-87. doi: 10.1016/S0076-6879(04)80008-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验