Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Structure. 2018 Jul 3;26(7):1035-1043.e2. doi: 10.1016/j.str.2018.05.004. Epub 2018 Jun 7.
At central nervous system synapses, agonist binding to postsynaptic ionotropic glutamate receptors (iGluRs) results in signaling between neurons. N-Methyl-D-aspartic acid (NMDA) receptors are a unique family of iGluRs that activate in response to the concurrent binding of glutamate and glycine. Here, we investigate the process of agonist binding to the GluN2A (glutamate binding) and GluN1 (glycine binding) NMDA receptor subtypes using long-timescale unbiased molecular dynamics simulations. We find that positively charged residues on the surface of the GluN2A ligand-binding domain (LBD) assist glutamate binding via a "guided-diffusion" mechanism, similar in fashion to glutamate binding to the GluA2 LBD of AMPA receptors. Glutamate can also bind in an inverted orientation. Glycine, on the other hand, binds to the GluN1 LBD via an "unguided-diffusion" mechanism, whereby glycine finds its binding site primarily by random thermal fluctuations. Free energy calculations quantify the glutamate- and glycine-binding processes.
在中枢神经系统突触中,激动剂与突触后离子型谷氨酸受体(iGluRs)结合会导致神经元之间的信号传递。N-甲基-D-天冬氨酸(NMDA)受体是一类独特的 iGluRs,其活性响应于谷氨酸和甘氨酸的同时结合。在这里,我们使用长时标无偏分子动力学模拟研究了激动剂与 GluN2A(谷氨酸结合)和 GluN1(甘氨酸结合)NMDA 受体亚型的结合过程。我们发现,GluN2A 配体结合域(LBD)表面的正电荷残基通过“引导扩散”机制辅助谷氨酸结合,其方式类似于 AMPA 受体 GluA2 LBD 与谷氨酸的结合。谷氨酸也可以以倒置的方向结合。另一方面,甘氨酸通过“无引导扩散”机制与 GluN1 LBD 结合,甘氨酸主要通过随机热波动找到其结合位点。自由能计算量化了谷氨酸和甘氨酸结合过程。