Suppr超能文献

银纳米颗粒的抗菌活性是否取决于纳米颗粒的形状?对革兰氏阴性细菌大肠杆菌的一项研究。

Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

作者信息

Pal Sukdeb, Tak Yu Kyung, Song Joon Myong

机构信息

Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.

出版信息

Appl Environ Microbiol. 2007 Mar;73(6):1712-20. doi: 10.1128/AEM.02218-06. Epub 2007 Jan 19.

Abstract

In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag(+) (in the form of AgNO(3)). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.

摘要

在这项工作中,我们研究了不同形状的银纳米颗粒在液体体系和琼脂平板上对革兰氏阴性细菌大肠杆菌的抗菌性能。能量过滤透射电子显微镜图像显示,处理后细胞膜发生了显著变化,导致细胞死亡。以{111}晶格面为基面的截顶三角形银纳米片与球形、棒状纳米颗粒以及Ag⁺(以AgNO₃形式存在)相比,表现出最强的杀菌作用。据推测,纳米级尺寸和{111}面的存在共同促进了这种杀菌性能。据我们所知,这是首次对不同形状银纳米颗粒的杀菌性能进行的比较研究,我们的结果表明,银纳米颗粒与革兰氏阴性生物大肠杆菌发生形状依赖性相互作用。

相似文献

2
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.
J Colloid Interface Sci. 2004 Jul 1;275(1):177-82. doi: 10.1016/j.jcis.2004.02.012.
3
Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.
J Colloid Interface Sci. 2009 Nov 15;339(2):521-6. doi: 10.1016/j.jcis.2009.07.052. Epub 2009 Jul 28.
5
Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:255-263. doi: 10.1016/j.msec.2018.12.053. Epub 2019 Jan 19.
8
Correlation of edge truncation with antibacterial activity of plate-like anisotropic silver nanoparticles.
Environ Sci Pollut Res Int. 2017 Sep;24(25):20429-20437. doi: 10.1007/s11356-017-9630-0. Epub 2017 Jul 13.
10
Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110679. doi: 10.1016/j.msec.2020.110679. Epub 2020 Jan 20.

引用本文的文献

1
Silver nanoparticles as next-generation antimicrobial agents: mechanisms, challenges, and innovations against multidrug-resistant bacteria.
Front Cell Infect Microbiol. 2025 Aug 14;15:1599113. doi: 10.3389/fcimb.2025.1599113. eCollection 2025.
2
Rapid Green Synthesis of Silver Nanoparticles by Reishi and Their Antibacterial Activity and Mechanisms.
J Biomater Nanobiotechnol. 2024 Jul;15(3):51-63. doi: 10.4236/jbnb.2024.153004. Epub 2024 Jul 12.
3
Multi-round Recycling of Green Waste for the Production of Silver Nanoparticles: Synthesis, Characterization, and Biological Activity.
ACS Omega. 2025 Aug 4;10(32):35793-35808. doi: 10.1021/acsomega.5c02607. eCollection 2025 Aug 19.
4
Antibacterial activity of promising nanostructured cesium oxide.
Discov Nano. 2025 Aug 18;20(1):140. doi: 10.1186/s11671-025-04327-2.
6
Biogenic Synthesis of Silver Nanoparticles and Their Diverse Biomedical Applications.
Molecules. 2025 Jul 24;30(15):3104. doi: 10.3390/molecules30153104.
8
Tailoring innovative silver nanoparticles for modern medicine: The importance of size and shape control and functional modifications.
Mater Today Bio. 2025 Jul 9;33:102071. doi: 10.1016/j.mtbio.2025.102071. eCollection 2025 Aug.
9
Biofilms and oral health: nanotechnology for biofilm control.
Discov Nano. 2025 Jul 16;20(1):114. doi: 10.1186/s11671-025-04299-3.
10
Group IB Metal-Based Nanomaterials for Antibacterial Applications.
Small Sci. 2025 Mar 9;5(4):2400412. doi: 10.1002/smsc.202400412. eCollection 2025 Apr.

本文引用的文献

1
The bactericidal effect of silver nanoparticles.
Nanotechnology. 2005 Oct;16(10):2346-53. doi: 10.1088/0957-4484/16/10/059. Epub 2005 Aug 26.
2
Inactivation of enveloped viruses by a silver-thiosulfate complex.
Met Based Drugs. 1994;1(5-6):511. doi: 10.1155/MBD.1994.511.
4
Interaction of silver nanoparticles with HIV-1.
J Nanobiotechnology. 2005 Jun 29;3:6. doi: 10.1186/1477-3155-3-6.
5
Chemistry and properties of nanocrystals of different shapes.
Chem Rev. 2005 Apr;105(4):1025-102. doi: 10.1021/cr030063a.
6
Shape-controlled synthesis of metal nanostructures: the case of silver.
Chemistry. 2005 Jan 7;11(2):454-63. doi: 10.1002/chem.200400927.
7
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.
J Colloid Interface Sci. 2004 Jul 1;275(1):177-82. doi: 10.1016/j.jcis.2004.02.012.
8
Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate.
Appl Environ Microbiol. 2003 Jul;69(7):4278-81. doi: 10.1128/AEM.69.7.4278-4281.2003.
9
Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.
Nat Biotechnol. 2003 Jan;21(1):41-6. doi: 10.1038/nbt764. Epub 2002 Dec 2.
10
Nanoparticles in cancer therapy and diagnosis.
Adv Drug Deliv Rev. 2002 Sep 13;54(5):631-51. doi: 10.1016/s0169-409x(02)00044-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验