Suppr超能文献

铜绿假单胞菌的rpoN基因改变了其对喹诺酮类和碳青霉烯类药物的敏感性。

rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems.

作者信息

Viducic Darija, Ono Tsuneko, Murakami Keiji, Katakami Mikiko, Susilowati Heni, Miyake Yoichiro

机构信息

Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan.

出版信息

Antimicrob Agents Chemother. 2007 Apr;51(4):1455-62. doi: 10.1128/AAC.00348-06. Epub 2007 Jan 29.

Abstract

The alternative sigma factor sigma54 has been implicated in diverse functions within the cells. In this study, we have constructed an rpoN mutant of Pseudomonas aeruginosa and investigated its importance as a target for antimicrobial agents, such as quinolones and carbapenems. The stationary-phase cells of the rpoN mutant displayed a survival rate approximately 15 times higher than that of the wild-type cells in the presence of quinolones and carbapenems. The stationary phase led to substantial production of pyoverdine by the P. aeruginosa rpoN mutant. Pyoverdine synthesis correlated with decreased susceptibility to antimicrobial agents. Quantitative real-time PCR revealed that stationary-phase cells of the rpoN mutant grown without an antimicrobial agent had approximately 4- to 140- and 2- to 14-fold-higher levels of transcripts of the pvdS and vqsR genes, respectively, than the wild-type strain. In the presence of an antimicrobial agent, levels of pvdS and vqsR transcripts were elevated 400- and 5-fold, respectively, in comparison to the wild-type levels. Flow cytometry assays using a green fluorescent protein reporter demonstrated increased expression of the vqsR gene in the rpoN mutant throughout growth. A pvdS mutant of P. aeruginosa, deficient in pyoverdine production, was shown to be susceptible to biapenem. These findings suggest that rpoN is involved in tolerance to antimicrobial agents in P. aeruginosa and that its tolerant effect is partly dependent on increased pyoverdine production and vqsR gene expression.

摘要

替代σ因子σ54已被证明在细胞内具有多种功能。在本研究中,我们构建了铜绿假单胞菌的rpoN突变体,并研究了其作为喹诺酮类和碳青霉烯类等抗菌剂靶点的重要性。在喹诺酮类和碳青霉烯类存在的情况下,rpoN突变体的稳定期细胞存活率比野生型细胞高约15倍。稳定期导致铜绿假单胞菌rpoN突变体大量产生绿脓菌素。绿脓菌素的合成与对抗菌剂敏感性的降低相关。定量实时PCR显示,在没有抗菌剂的情况下生长的rpoN突变体的稳定期细胞中,pvdS和vqsR基因的转录水平分别比野生型菌株高约4至140倍和2至14倍。在存在抗菌剂的情况下,与野生型水平相比,pvdS和vqsR转录本水平分别升高了400倍和5倍。使用绿色荧光蛋白报告基因的流式细胞术分析表明,在整个生长过程中,rpoN突变体中vqsR基因的表达增加。铜绿假单胞菌的一个缺乏绿脓菌素产生的pvdS突变体被证明对比阿培南敏感。这些发现表明,rpoN参与了铜绿假单胞菌对抗菌剂的耐受性,并且其耐受作用部分依赖于绿脓菌素产量的增加和vqsR基因的表达。

相似文献

1
rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems.
Antimicrob Agents Chemother. 2007 Apr;51(4):1455-62. doi: 10.1128/AAC.00348-06. Epub 2007 Jan 29.
2
RpoN Modulates Carbapenem Tolerance in Pseudomonas aeruginosa through Pseudomonas Quinolone Signal and PqsE.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5752-64. doi: 10.1128/AAC.00260-16. Print 2016 Oct.
4
Targeting the alternative sigma factor RpoN to combat virulence in Pseudomonas aeruginosa.
Sci Rep. 2017 Oct 3;7(1):12615. doi: 10.1038/s41598-017-12667-y.
5
RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2018 Jul 25;200(16). doi: 10.1128/JB.00205-18. Print 2018 Aug 15.
7
Analysis of the Pseudomonas aeruginosa regulon controlled by the sensor kinase KinB and sigma factor RpoN.
J Bacteriol. 2012 Mar;194(6):1317-30. doi: 10.1128/JB.06105-11. Epub 2011 Dec 30.
8
Characterization of Brucella abortus sigma factor sigma54 (rpoN): genetic complementation of Sinorhizobium meliloti ntrA mutant.
Microb Pathog. 2008 Nov-Dec;45(5-6):394-402. doi: 10.1016/j.micpath.2008.09.002. Epub 2008 Sep 27.
9
AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production.
mBio. 2018 Jan 30;9(1):e02318-17. doi: 10.1128/mBio.02318-17.
10
Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2005 Aug;187(15):5097-107. doi: 10.1128/JB.187.15.5097-5107.2005.

引用本文的文献

1
The sigma factor σ () functions as a global regulator of antibiotic resistance, motility, metabolism, and virulence in .
Front Microbiol. 2025 Apr 29;16:1569627. doi: 10.3389/fmicb.2025.1569627. eCollection 2025.
2
A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa.
Sci Rep. 2024 Apr 13;14(1):8598. doi: 10.1038/s41598-024-59188-z.
3
Spread of ST274 Clone in Different Niches: Resistome, Virulome, and Phylogenetic Relationship.
Antibiotics (Basel). 2023 Oct 24;12(11):1561. doi: 10.3390/antibiotics12111561.
4
RpoN is required for the motility and contributes to the killing ability of Plesiomonas shigelloides.
BMC Microbiol. 2022 Dec 12;22(1):299. doi: 10.1186/s12866-022-02722-8.
5
The Regulatory Functions of σ Factor in Phytopathogenic Bacteria.
Int J Mol Sci. 2021 Nov 24;22(23):12692. doi: 10.3390/ijms222312692.
7
Mutational Evolution of Resistance to Ribosome-Targeting Antibiotics.
Front Genet. 2018 Oct 18;9:451. doi: 10.3389/fgene.2018.00451. eCollection 2018.
8
The Putative De--acetylase DnpA Contributes to Intracellular and Biofilm-Associated Persistence of Exposed to Fluoroquinolones.
Front Microbiol. 2018 Jul 10;9:1455. doi: 10.3389/fmicb.2018.01455. eCollection 2018.
9
RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2018 Jul 25;200(16). doi: 10.1128/JB.00205-18. Print 2018 Aug 15.
10
Targeting the alternative sigma factor RpoN to combat virulence in Pseudomonas aeruginosa.
Sci Rep. 2017 Oct 3;7(1):12615. doi: 10.1038/s41598-017-12667-y.

本文引用的文献

2
GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB.
FEMS Microbiol Lett. 2005 Jan 15;242(2):287-95. doi: 10.1016/j.femsle.2004.11.020.
3
Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance.
FEMS Microbiol Lett. 2005 Jan 1;242(1):161-7. doi: 10.1016/j.femsle.2004.11.005.
4
Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa.
Microbiology (Reading). 2004 Apr;150(Pt 4):831-841. doi: 10.1099/mic.0.26906-0.
5
Growth phase-dependent response of Helicobacter pylori to iron starvation.
Infect Immun. 2003 Nov;71(11):6510-25. doi: 10.1128/IAI.71.11.6510-6525.2003.
6
Autoinduction and signal transduction in the regulation of staphylococcal virulence.
Mol Microbiol. 2003 Jun;48(6):1429-49. doi: 10.1046/j.1365-2958.2003.03526.x.
7
The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa.
FEMS Microbiol Lett. 2003 Mar 28;220(2):187-95. doi: 10.1016/S0378-1097(03)00097-1.
8
Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2003 Apr;185(7):2227-35. doi: 10.1128/JB.185.7.2227-2235.2003.
9
Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):7072-7. doi: 10.1073/pnas.092016999. Epub 2002 May 7.
10
The limits to genomic predictions: role of sigma(N) in environmental stress survival of Pseudomonas putida.
FEMS Microbiol Ecol. 2001 Apr;35(2):217-221. doi: 10.1111/j.1574-6941.2001.tb00806.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验