Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
mBio. 2018 Jan 30;9(1):e02318-17. doi: 10.1128/mBio.02318-17.
employs numerous, complex regulatory elements to control expression of its many virulence systems. The AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 Δ mutant strain compared to wild-type PAO1, that and are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 mutant produced lower levels of pyoverdine but increased expression of the small RNAs and compared to PAO1. In contrast, the mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor , but it had decreased pyocyanin production. AlgR specifically bound to the and promoters AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration AlgR phosphorylation effects were also examined in a feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of to establish and maintain an infection. Pyoverdine and pyocyanin production are well-known virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state inversely controls pyoverdine and pyocyanin production and that this control is carbon source dependent. expressing AlgR D54N, mimicking the constitutively unphosphorylated state, produced more pyocyanin than cells expressing wild-type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the small regulatory RNA and the pyoverdine sigma factor, PvdS. Abrogating pyoverdine or pyocyanin gene expression has been shown to attenuate virulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenuates virulence in three different models, a feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR-dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study.
利用众多复杂的调控元件来控制其许多毒力系统的表达。AlgZR 双组分调控系统控制着几种关键毒力表型的表达。我们最近通过与野生型 PAO1 相比,对 PAO1Δ 突变株的转录组谱进行了分析,发现 和 是共转录的,并表现出差异的铁依赖性基因表达。以前的表达谱分析是在没有 和 的菌株中进行的,结果表明 AlgR 可以作为激活剂或抑制剂,这取决于基因。因此,检查处于不同 AlgR 磷酸化状态的细胞中的 基因表达揭示了更大的生理相关性。因此,通过微阵列比较携带编码磷酸模拟物(AlgR D54E)或磷酸失活(AlgR D54N)形式的 等位基因的菌株的基因表达。这些菌株的转录组分析显示,有 25 个与铁载体生物合成或血红素摄取或产生相关的差异表达基因。与 PAO1 相比,PAO1 突变体产生的绿脓菌素水平较低,但 和 的小 RNA 表达增加。相比之下, 突变体比野生型 PAO1 产生更多的绿脓菌素。另一方面,PAO1 突变体产生更高水平的绿脓菌素,可能是由于编码 sigma 因子 的铁调节基因表达增加,但绿脓菌素的产量却减少了。AlgR 特异性结合到 和 启动子上,AlgR 依赖性绿脓菌素的产生还受到碳源而不是细胞外铁浓度的影响,AlgR 磷酸化作用也在 喂养、小鼠急性肺炎和穿孔伤口感染模型中进行了研究。AlgR 磷酸化的缺失削弱了这些感染模型中的 毒力。这些结果表明,AlgR 磷酸化状态可以直接和间接调节铁获取基因的表达,这可能最终影响 建立和维持感染的能力。绿脓菌素和绿脓菌素是众所周知的 毒力因子,它们以不同的方式从环境和宿主蛋白中获取细胞外铁。在这里,我们表明 AlgR 磷酸化状态反向控制绿脓菌素和绿脓菌素的产生,并且这种控制依赖于碳源。表达 AlgR D54N,模拟组成型非磷酸化状态,比表达野生型 AlgR 的细胞产生更多的绿脓菌素。相比之下,表达 AlgR 磷酸模拟物(AlgR D54E)的菌株产生更高水平的绿脓菌素。绿脓菌素的产生直接受到 小调控 RNA 和绿脓菌素 sigma 因子 PvdS 的控制。阻断绿脓菌素或绿脓菌素基因的表达已被证明在多种模型中减弱了毒力。此外,AlgR 不能磷酸化会削弱三种不同模型中的毒力,即 喂养模型、小鼠急性肺炎模型和伤口感染模型。有趣的是,AlgR 依赖性绿脓菌素的产生对碳源有反应,表明这种调节具有进一步研究的额外复杂性。