Kirk Martin L, Shultz David A, Depperman Ezra C, Brannen Candice L
Department of Chemistry, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.
J Am Chem Soc. 2007 Feb 21;129(7):1937-43. doi: 10.1021/ja065384t. Epub 2007 Jan 31.
A Valence Bond Configuration Interaction (VBCI) model is used to relate the intraligand magnetic exchange interaction (J) to the electronic coupling matrix element (HAB) in Tp(Cum,MeZn)(SQNN), a compound that possesses a Donor-Acceptor (D-A) SemiQuinone-NitronylNitroxide (SQNN) biradical ligand. Within this framework, an SQ --> NN charge transfer state mixes with the ground state and stabilizes the spin triplet (S = 1). This charge-transfer transition is observed spectroscopically and probed using resonance Raman spectroscopy. In addition, the temperature-dependent electronic absorption spectrum of the Ni(II) complex, Tp(Cum,MeNi)(SQNN), has been studied. Exchange coupling between the S = 1 Ni(II) ion and S = 1 SQNN provides a mechanism for observing the formally spin-forbidden, ligand-based 3GC --> 1CTC transition. This provides a means of determining U, the mean GC --> CTC energy, and a one-center exchange integral, K(0). The experimental determination of J, U, and K(0) permits facile calculation of HAB, and we show that this methodology can be extended to determine the electronic coupling matrix element in related SQ-Bridge-NN molecules. As magnetic susceptibility measurements are easily acquired in the solid state, H(AB) may be effectively determined for single molecules in a known geometry, provided a crystal structure exists for the biradical complex. Thus, SQ-Bridge-NN molecules possess considerable potential for probing both geometric and electronic structure contributions to the magnitude of the electronic coupling matrix element associated with a given bridge fragment.
价键组态相互作用(VBCI)模型用于将配体内磁交换相互作用(J)与Tp(Cum,MeZn)(SQNN)中的电子耦合矩阵元(HAB)相关联,Tp(Cum,MeZn)(SQNN)是一种具有供体-受体(D-A)半醌-硝酰基氮氧化物(SQNN)双自由基配体的化合物。在此框架内,SQ→NN电荷转移态与基态混合并稳定自旋三重态(S = 1)。通过光谱观察到这种电荷转移跃迁,并使用共振拉曼光谱进行探测。此外,还研究了Ni(II)配合物Tp(Cum,MeNi)(SQNN)的温度依赖性电子吸收光谱。S = 1的Ni(II)离子与S = 1的SQNN之间的交换耦合提供了一种观察形式上自旋禁阻的、基于配体的3GC→1CTC跃迁的机制。这提供了一种确定U(平均GC→CTC能量)和单中心交换积分K(0)的方法。对J、U和K(0)的实验测定允许轻松计算HAB,并且我们表明这种方法可以扩展到确定相关SQ-桥-NN分子中的电子耦合矩阵元。由于在固态中很容易获得磁化率测量值,只要双自由基配合物存在晶体结构,就可以有效地确定已知几何结构的单分子的H(AB)。因此,SQ-桥-NN分子在探测与给定桥片段相关的电子耦合矩阵元大小的几何和电子结构贡献方面具有相当大的潜力。