Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.
J Am Chem Soc. 2009 Dec 30;131(51):18304-13. doi: 10.1021/ja904648r.
We describe the electronic structure and the origin of ferromagnetic exchange coupling in two new metal complexes, NN-SQ-Co(III)(py)(2)Cat-NN (1) and NN-Ph-SQ-Co(III)(py)(2)Cat-Ph-NN (2) (NN = nitronylnitroxide radical, Ph = 1,4-phenylene, SQ = S = (1)/(2) semiquinone radical, Cat = S = 0 catecholate, and py = pyridine). Near-IR electronic absorption spectroscopy for 1 and 2 reveals a low-energy optical band that has been assigned as a Psi(u) --> Psi(g) transition involving bonding and antibonding linear combinations of delocalized dioxolene (SQ/Cat) valence frontier molecular orbitals. The ferromagnetic exchange interaction in 1 is so strong that only the high-spin quartet state (S(T) = (3)/(2)) is thermally populated at temperatures up to 300 K. The temperature-dependent magnetic susceptibility data for 2 reveals that an excited state spin doublet (S(T) = (1)/(2)) is populated at higher temperatures, indicating that the phenylene spacer modulates the magnitude of the magnetic exchange. The valence delocalization within the dioxolene dyad of 2 results in ferromagnetic alignment of two localized NN radicals separated by over 22 A. The ferromagnetic exchange in 1 and 2 results from a spin-dependent delocalization (double exchange type) process and the origin of this strong electron correlation has been understood in terms of a valence bond configuration interaction (VBCI) model. We show that ferromagnetic coupling promoted by organic mixed-valency provides keen insight into the ability of single molecules to communicate spin information over nanoscale distances. Furthermore, the strong interaction between the itinerant dioxolene electron and localized NN electron spins impacts our ability to understand the exchange interaction between delocalized electrons and pinned magnetic impurities in technologically important dilute magnetic semiconductor materials. The long correlation length (22 A) of the itinerant electron that mediates this coupling indicates that high-spin pi-delocalized organic molecules could find applications as nanoscale spin-polarized electron injectors and molecular wires.
我们描述了两个新的金属配合物 NN-SQ-Co(III)(py)(2)Cat-NN(1)和 NN-Ph-SQ-Co(III)(py)(2)Cat-Ph-NN(2)的电子结构和铁磁交换耦合的起源。NN = 硝酰基氮氧化物自由基,Ph = 1,4-亚苯基,SQ = S = (1)/(2) 半醌自由基,Cat = S = 0 儿茶酚,py = 吡啶)。1 和 2 的近红外电子吸收光谱显示出一个低能量的光学带,该带已被分配为 Psi(u) --> Psi(g) 跃迁,涉及离域二氧杂环戊烯(SQ/Cat)价前线分子轨道的键合和反键线性组合。1 中的铁磁交换相互作用非常强,以至于在高达 300 K 的温度下,只有高自旋四重态(S(T) = (3)/(2))被热占据。2 的温度依赖性磁化率数据表明,在较高温度下,激发态自旋二重态(S(T) = (1)/(2))被占据,表明亚苯基间隔物调节了磁交换的大小。2 中二氧杂环戊烯二聚体中的价离域导致两个分离超过 22 A 的局部 NN 自由基的铁磁排列。1 和 2 中的铁磁交换是由于自旋相关的离域(双交换类型)过程,并且这种强电子相关的起源已经根据价键组态相互作用(VBCI)模型得到了理解。我们表明,有机混合价态促进的铁磁耦合提供了对单个分子在纳米尺度距离上传递自旋信息的能力的深刻理解。此外,巡游二氧杂环戊烯电子与局部 NN 电子自旋之间的强相互作用影响了我们理解在技术上重要的稀磁半导体材料中离域电子与固定磁杂质之间的交换相互作用的能力。介导这种耦合的巡游电子的长相关长度(22 A)表明,高自旋π离域有机分子可以作为纳米尺度自旋极化电子注入器和分子线找到应用。