Nafady Ayman, Bond Alan M, Bilyk Alexander, Harris Alexander R, Bhatt Anand I, O'Mullane Anthony P, De Marco Roland
School of Chemistry, Monash University, P.O. Box 23, Victoria 3800, Australia.
J Am Chem Soc. 2007 Feb 28;129(8):2369-82. doi: 10.1021/ja067219j. Epub 2007 Jan 31.
Electrocrystallization of single nanowires and/or crystalline thin films of the semiconducting and magnetic Co[TCNQ]2(H2O)2 (TCNQ=tetracyanoquinodimethane) charge-transfer complex onto glassy carbon, indium tin oxide, or metallic electrodes occurs when TCNQ is reduced in acetonitrile (0.1 M [NBu4][ClO4]) in the presence of hydrated cobalt(II) salts. The morphology of the deposited solid is potential dependent. Other factors influencing the electrocrystallization process include deposition time, concentration, and identity of the Co2+(MeCN) counteranion. Mechanistic details have been elucidated by use of cyclic voltammetry, chronoamperometry, electrochemical quartz crystal microbalance, and galvanostatic methods together with spectroscopic and microscopic techniques. The results provide direct evidence that electrocrystallization takes place through two distinctly different, potential-dependent mechanisms, with progressive nucleation and 3-D growth being controlled by the generation of [TCNQ]- at the electrode and the diffusion of Co2+(MeCN) from the bulk solution. Images obtained by scanning electron microscopy reveal that electrocrystallization of Co[TCNQ]2(H2O)2 at potentials in the range of 0.1-0 V vs Ag/AgCl, corresponding to the [TCNQ]0/- diffusion-controlled regime, gives rise to arrays of well-separated, needle-shaped nanowires via the overall reaction 2[TCNQ]-(MeCN)+Co2+(MeCN)+2H2O right harpoon over left harpoon {Co[TCNQ]2(H2O)2}(s). In this potential region, nucleation and growth occur at randomly separated defect sites on the electrode surface. In contrast, at more negative potentials, a compact film of densely packed, uniformly oriented, hexagonal-shaped nanorods is formed. This is achieved at a substantially increased number of nucleation sites created by direct reduction of a thin film of what is proposed to be cobalt-stabilized {(Co2+)([TCNQ2]-)2} dimeric anion. Despite the potential-dependent morphology of the electrocrystallized Co[TCNQ]2(H2O)2 and the markedly different nucleation-growth mechanisms, IR, Raman, elemental, and thermogravimetric analyses, together with X-ray diffraction, all confirmed the formation of a highly pure and crystalline phase of Co[TCNQ]2(H2O)2 on the electrode surface. Thus, differences in the electrodeposited material are confined to morphology and not to phase or composition differences. This study highlights the importance of the electrocrystallization approach in constructing and precisely controlling the morphology and stoichiometry of Co[TCNQ]2-based materials.
当在水合钴(II)盐存在下,于乙腈(0.1 M [NBu4][ClO4])中还原TCNQ时,半导体和磁性的Co[TCNQ]2(H2O)2(TCNQ = 四氰基对苯二醌二甲烷)电荷转移配合物的单根纳米线和/或晶体薄膜会在玻碳、氧化铟锡或金属电极上发生电结晶。沉积固体的形态取决于电位。影响电结晶过程的其他因素包括沉积时间、浓度以及Co2+(MeCN)抗衡阴离子的种类。通过循环伏安法、计时电流法、电化学石英晶体微天平以及恒电流法并结合光谱和显微镜技术,已阐明了其机理细节。结果提供了直接证据,表明电结晶通过两种截然不同的、电位依赖性机制发生,逐步成核和三维生长由电极上[TCNQ]-的生成以及Co2+(MeCN)从本体溶液中的扩散控制。扫描电子显微镜获得的图像显示,在相对于Ag/AgCl为0.1 - 0 V的电位范围内,Co[TCNQ]2(H2O)2的电结晶对应于[TCNQ]0/-扩散控制区域,通过总反应2[TCNQ]-(MeCN)+Co2+(MeCN)+2H2O⇌{Co[TCNQ]2(H2O)2}(s)产生排列良好、分离的针状纳米线阵列。在该电位区域,成核和生长发生在电极表面随机分离的缺陷位点上。相比之下,在更负的电位下,会形成由紧密堆积、取向均匀的六边形纳米棒组成的致密薄膜。这是通过直接还原一层被认为是钴稳定的{(Co2+)([TCNQ2]-)2}二聚阴离子薄膜所产生的大量成核位点实现的。尽管电结晶的Co[TCNQ]2(H2O)2具有电位依赖性形态以及明显不同的成核 - 生长机制,但红外、拉曼、元素和热重分析以及X射线衍射都证实了在电极表面形成了高纯度且结晶的Co[TCNQ]2(H2O)2相。因此,电沉积材料的差异仅限于形态,而不是相或组成差异。这项研究突出了电结晶方法在构建和精确控制基于Co[TCNQ]2的材料的形态和化学计量方面的重要性。