Duarte Natalie C, Becker Scott A, Jamshidi Neema, Thiele Ines, Mo Monica L, Vo Thuy D, Srivas Rohith, Palsson Bernhard Ø
Bioengineering Department, University of California at San Diego, La Jolla, CA 92093-0412, USA.
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82. doi: 10.1073/pnas.0610772104. Epub 2007 Jan 31.
Metabolism is a vital cellular process, and its malfunction is a major contributor to human disease. Metabolic networks are complex and highly interconnected, and thus systems-level computational approaches are required to elucidate and understand metabolic genotype-phenotype relationships. We have manually reconstructed the global human metabolic network based on Build 35 of the genome annotation and a comprehensive evaluation of >50 years of legacy data (i.e., bibliomic data). Herein we describe the reconstruction process and demonstrate how the resulting genome-scale (or global) network can be used (i) for the discovery of missing information, (ii) for the formulation of an in silico model, and (iii) as a structured context for analyzing high-throughput biological data sets. Our comprehensive evaluation of the literature revealed many gaps in the current understanding of human metabolism that require future experimental investigation. Mathematical analysis of network structure elucidated the implications of intracellular compartmentalization and the potential use of correlated reaction sets for alternative drug target identification. Integrated analysis of high-throughput data sets within the context of the reconstruction enabled a global assessment of functional metabolic states. These results highlight some of the applications enabled by the reconstructed human metabolic network. The establishment of this network represents an important step toward genome-scale human systems biology.
新陈代谢是一个至关重要的细胞过程,其功能失调是导致人类疾病的主要因素。代谢网络复杂且高度互联,因此需要系统层面的计算方法来阐明和理解代谢基因型与表型之间的关系。我们基于基因组注释构建35版以及对50多年的遗留数据(即文献组数据)进行全面评估,手动重建了全球人类代谢网络。在此,我们描述重建过程,并展示所得的基因组规模(或全球)网络如何用于(i)发现缺失信息,(ii)构建计算机模拟模型,以及(iii)作为分析高通量生物数据集的结构化背景。我们对文献的全面评估揭示了当前人类新陈代谢理解中的许多空白,需要未来进行实验研究。对网络结构的数学分析阐明了细胞内区室化的影响以及相关反应集在替代药物靶点识别中的潜在用途。在重建背景下对高通量数据集进行综合分析,能够对功能性代谢状态进行全局评估。这些结果突出了重建的人类代谢网络所带来的一些应用。该网络的建立是迈向基因组规模人类系统生物学的重要一步。