Suppr超能文献

基于基因组和文献组数据的人类代谢网络全局重建。

Global reconstruction of the human metabolic network based on genomic and bibliomic data.

作者信息

Duarte Natalie C, Becker Scott A, Jamshidi Neema, Thiele Ines, Mo Monica L, Vo Thuy D, Srivas Rohith, Palsson Bernhard Ø

机构信息

Bioengineering Department, University of California at San Diego, La Jolla, CA 92093-0412, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82. doi: 10.1073/pnas.0610772104. Epub 2007 Jan 31.

Abstract

Metabolism is a vital cellular process, and its malfunction is a major contributor to human disease. Metabolic networks are complex and highly interconnected, and thus systems-level computational approaches are required to elucidate and understand metabolic genotype-phenotype relationships. We have manually reconstructed the global human metabolic network based on Build 35 of the genome annotation and a comprehensive evaluation of >50 years of legacy data (i.e., bibliomic data). Herein we describe the reconstruction process and demonstrate how the resulting genome-scale (or global) network can be used (i) for the discovery of missing information, (ii) for the formulation of an in silico model, and (iii) as a structured context for analyzing high-throughput biological data sets. Our comprehensive evaluation of the literature revealed many gaps in the current understanding of human metabolism that require future experimental investigation. Mathematical analysis of network structure elucidated the implications of intracellular compartmentalization and the potential use of correlated reaction sets for alternative drug target identification. Integrated analysis of high-throughput data sets within the context of the reconstruction enabled a global assessment of functional metabolic states. These results highlight some of the applications enabled by the reconstructed human metabolic network. The establishment of this network represents an important step toward genome-scale human systems biology.

摘要

新陈代谢是一个至关重要的细胞过程,其功能失调是导致人类疾病的主要因素。代谢网络复杂且高度互联,因此需要系统层面的计算方法来阐明和理解代谢基因型与表型之间的关系。我们基于基因组注释构建35版以及对50多年的遗留数据(即文献组数据)进行全面评估,手动重建了全球人类代谢网络。在此,我们描述重建过程,并展示所得的基因组规模(或全球)网络如何用于(i)发现缺失信息,(ii)构建计算机模拟模型,以及(iii)作为分析高通量生物数据集的结构化背景。我们对文献的全面评估揭示了当前人类新陈代谢理解中的许多空白,需要未来进行实验研究。对网络结构的数学分析阐明了细胞内区室化的影响以及相关反应集在替代药物靶点识别中的潜在用途。在重建背景下对高通量数据集进行综合分析,能够对功能性代谢状态进行全局评估。这些结果突出了重建的人类代谢网络所带来的一些应用。该网络的建立是迈向基因组规模人类系统生物学的重要一步。

相似文献

1
Global reconstruction of the human metabolic network based on genomic and bibliomic data.
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82. doi: 10.1073/pnas.0610772104. Epub 2007 Jan 31.
2
Using the reconstructed genome-scale human metabolic network to study physiology and pathology.
J Intern Med. 2012 Feb;271(2):131-41. doi: 10.1111/j.1365-2796.2011.02494.x.
3
The Edinburgh human metabolic network reconstruction and its functional analysis.
Mol Syst Biol. 2007;3:135. doi: 10.1038/msb4100177. Epub 2007 Sep 18.
4
Systems medicine and metabolic modelling.
J Intern Med. 2012 Feb;271(2):142-54. doi: 10.1111/j.1365-2796.2011.02493.x.
6
A genome-scale, constraint-based approach to systems biology of human metabolism.
Mol Biosyst. 2007 Sep;3(9):598-603. doi: 10.1039/b705597h. Epub 2007 Jul 11.
7
Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.
Biosystems. 2016 Sep;147:1-10. doi: 10.1016/j.biosystems.2016.06.001. Epub 2016 Jun 7.
8
Genome-scale modeling of human metabolism - a systems biology approach.
Biotechnol J. 2013 Sep;8(9):985-96. doi: 10.1002/biot.201200275. Epub 2013 Apr 24.
9
Human metabolic network: reconstruction, simulation, and applications in systems biology.
Metabolites. 2012 Mar 2;2(1):242-53. doi: 10.3390/metabo2010242.
10
Metabolic network modeling and simulation for drug targeting and discovery.
Biotechnol J. 2012 Mar;7(3):330-42. doi: 10.1002/biot.201100159. Epub 2011 Nov 29.

引用本文的文献

1
Artificial intelligence and computational methods in human metabolism research: A comprehensive survey.
J Pharm Anal. 2025 Aug;15(8):101437. doi: 10.1016/j.jpha.2025.101437. Epub 2025 Aug 18.
2
Mechanistic modeling of cell viability assays with in silico lineage tracing.
PLoS Comput Biol. 2025 Aug 29;21(8):e1013156. doi: 10.1371/journal.pcbi.1013156. eCollection 2025 Aug.
4
Longitudinal big biological data in the AI era.
Mol Syst Biol. 2025 Aug 5. doi: 10.1038/s44320-025-00134-0.
6
Atlas-scale metabolic activities inferred from single-cell and spatial transcriptomics.
bioRxiv. 2025 May 14:2025.05.09.653038. doi: 10.1101/2025.05.09.653038.
8
diel_models: a python package for systematic integration of day-night cycles into plant genome-scale metabolic models.
Bioinform Adv. 2025 Apr 16;5(1):vbaf087. doi: 10.1093/bioadv/vbaf087. eCollection 2025.
9
Flux Sampling Suggests Metabolic Signatures of High Antibody-Producing CHO Cells.
Biotechnol Bioeng. 2025 Jul;122(7):1898-1913. doi: 10.1002/bit.28982. Epub 2025 Apr 11.
10
Moving from genome-scale to community-scale metabolic models for the human gut microbiome.
Nat Microbiol. 2025 May;10(5):1055-1066. doi: 10.1038/s41564-025-01972-2. Epub 2025 Apr 11.

本文引用的文献

1
Systems approach to refining genome annotation.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17480-4. doi: 10.1073/pnas.0603364103. Epub 2006 Nov 6.
2
Sphingolipid metabolism diseases.
Biochim Biophys Acta. 2006 Dec;1758(12):2057-79. doi: 10.1016/j.bbamem.2006.05.027. Epub 2006 Jun 14.
3
GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle.
Physiol Genomics. 2006 Oct 11;27(2):114-21. doi: 10.1152/physiolgenomics.00045.2006. Epub 2006 Jul 18.
4
Systems biology of SNPs.
Mol Syst Biol. 2006;2:38. doi: 10.1038/msb4100077. Epub 2006 Jul 4.
5
Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.
Biotechnol Bioeng. 2006 Dec 5;95(5):992-1002. doi: 10.1002/bit.21073.
6
Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri.
Mol Syst Biol. 2006;2:2006.0004. doi: 10.1038/msb4100046. Epub 2006 Jan 31.
7
Metabolite coupling in genome-scale metabolic networks.
BMC Bioinformatics. 2006 Mar 6;7:111. doi: 10.1186/1471-2105-7-111.
8
Towards multidimensional genome annotation.
Nat Rev Genet. 2006 Feb;7(2):130-41. doi: 10.1038/nrg1769.
9
From genomics to chemical genomics: new developments in KEGG.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7. doi: 10.1093/nar/gkj102.
10
Use of constraint-based modeling for the prediction and validation of antimicrobial targets.
Biochem Pharmacol. 2006 Mar 30;71(7):1026-35. doi: 10.1016/j.bcp.2005.10.049. Epub 2005 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验