Suppr超能文献

解析超导电路中的光子数态。

Resolving photon number states in a superconducting circuit.

作者信息

Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J

机构信息

Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Nature. 2007 Feb 1;445(7127):515-8. doi: 10.1038/nature05461.

Abstract

Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.

摘要

电磁信号总是由光子组成,尽管在电路领域中,这些信号是以导线上的电压和电流来传输的,而且光子能量的离散性通常并不明显。然而,通过将一个超导量子比特(qubit)与微波传输线上的信号相耦合,就有可能构建出一种集成电路,在这种电路中,哪怕只有一个光子的存在与否都可能产生显著影响。这样一个系统可以用电路量子电动力学(QED)来描述——它是腔QED的电路等效形式,在腔QED中光子与原子或量子点相互作用。此前,电路QED器件已被证明能达到共振强耦合 regime,在该 regime中,单个量子比特可以多次吸收和重新发射单个光子。在此,我们报告了一项在强色散极限下的电路QED实验,这是一个新的 regime,其中单个光子对量子比特有很大影响但从未被吸收。这种强色散 regime的标志是,量子比特跃迁能量可以分解为微波场每个光子数状态对应的一条单独谱线。每条谱线的强度是衡量在腔中找到相应光子数概率的一种度量。这种效应被用于区分相干场和热场,并且可用于创建一个光子统计分析仪。由于此过程中没有光子被吸收,应该有可能通过测量产生非经典光态,并执行量子比特 - 光子条件逻辑,这是量子计算机逻辑总线的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验