Gleyzes Sébastien, Kuhr Stefan, Guerlin Christine, Bernu Julien, Deléglise Samuel, Busk Hoff Ulrich, Brune Michel, Raimond Jean-Michel, Haroche Serge
Laboratoire Kastler Brossel, Département de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Nature. 2007 Mar 15;446(7133):297-300. doi: 10.1038/nature05589.
A microscopic quantum system under continuous observation exhibits at random times sudden jumps between its states. The detection of this quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system's evolution. Whereas quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, this has proved more challenging for light quanta. Standard photodetectors absorb light and are thus unable to detect the same photon twice. It is therefore necessary to use a transparent counter that can 'see' photons without destroying them. Moreover, the light needs to be stored for durations much longer than the QND detection time. Here we report an experiment in which we fulfil these challenging conditions and observe quantum jumps in the photon number. Microwave photons are stored in a superconducting cavity for times up to half a second, and are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms, highly correlated in the same state, are interrupted by sudden state switchings. These telegraphic signals record the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons should open new perspectives for the exploration of the quantum-to-classical boundary.
处于持续观测下的微观量子系统会在随机时刻在其状态之间突然跳跃。要检测到这种量子特性,需要在系统演化过程中多次重复进行量子非破坏(QND)测量。虽然已经观测到捕获的大质量粒子(电子、离子或分子)的量子跳跃,但事实证明这对光量子来说更具挑战性。标准光电探测器会吸收光,因此无法对同一光子进行两次检测。所以有必要使用一种透明计数器,它能够“看到”光子而不破坏它们。此外,光需要存储的时间要比QND检测时间长得多。在此,我们报告一项实验,在该实验中我们满足了这些具有挑战性的条件,并观测到了光子数的量子跳跃。微波光子被存储在一个超导腔中长达半秒的时间,并被一连串非吸收性原子反复探测。原子干涉仪测量由非共振腔场引起的原子偶极相移,这样最终的原子状态就能直接揭示腔中单个光子的存在。数百个处于相同状态且高度相关的原子序列会被突然的状态切换打断。这些电传信号记录了单个光子的产生、存续和湮灭。将类似的QND程序应用于具有数十个光子的介观场,应该会为探索量子到经典的边界开辟新的视角。