Mignotte Max
Département d'Informatique et de Recherche Opérationnelle (DIRO), Université de Montréal, Canada.
IEEE Trans Image Process. 2007 Feb;16(2):523-33. doi: 10.1109/tip.2006.887729.
This paper investigates the problem of image denoising when the image is corrupted by additive white Gaussian noise. We herein propose a spatial adaptive denoising method which is based on an averaging process performed on a set of Markov Chain Monte-Carlo simulations of region partition maps constrained to be spatially piecewise uniform (i.e., constant in grey level value sense) for each estimated constant-value regions. For the estimation of these region partition maps, we have adopted the unsupervised Markovian framework in which parameters are automatically estimated in the least square sense. This sequential averaging allows to obtain, under our image model, an approximation of the image to be recovered in the minimal mean square sense error. The experiments reported in this paper demonstrate that the discussed method performs competitively and sometimes better than the best existing state-of-the-art wavelet-based denoising methods in benchmark tests.
本文研究了图像被加性高斯白噪声破坏时的图像去噪问题。在此,我们提出一种空间自适应去噪方法,该方法基于对一组马尔可夫链蒙特卡罗模拟进行平均处理,这些模拟针对每个估计的恒定值区域的区域划分图进行,且该区域划分图在空间上受限于分段均匀(即在灰度值意义上恒定)。对于这些区域划分图的估计,我们采用了无监督马尔可夫框架,其中参数在最小二乘意义下自动估计。这种顺序平均使得在我们的图像模型下,能够以最小均方误差意义获得待恢复图像的近似值。本文所报告的实验表明,在基准测试中,所讨论的方法具有竞争力,并且有时比现有的基于小波的最佳去噪方法表现更好。