Suppr超能文献

一种用于图像去卷积的基于分割的正则化项。

A segmentation-based regularization term for image deconvolution.

作者信息

Mignotte Max

机构信息

Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, QC, Canada.

出版信息

IEEE Trans Image Process. 2006 Jul;15(7):1973-84. doi: 10.1109/tip.2006.873446.

Abstract

This paper proposes a new and original inhomogeneous restoration (deconvolution) model under the Bayesian framework for observed images degraded by space-invariant blur and additive Gaussian noise. In this model, regularization is achieved during the iterative restoration process with a segmentation-based a priori term. This adaptive edge-preserving regularization term applies a local smoothness constraint to pre-estimated constant-valued regions of the target image. These constant-valued regions (the segmentation map) of the target image are obtained from a preliminary Wiener deconvolution estimate. In order to estimate reliable segmentation maps, we have also adopted a Bayesian Markovian framework in which the regularized segmentations are estimated in the maximum a posteriori (MAP) sense with the joint use of local Potts prior and appropriate Gaussian conditional luminance distributions. In order to make these segmentations unsupervised, these likelihood distributions are estimated in the maximum likelihood sense. To compute the MAP estimate associated to the restoration, we use a simple steepest descent procedure resulting in an efficient iterative process converging to a globally optimal restoration. The experiments reported in this paper demonstrate that the discussed method performs competitively and sometimes better than the best existing state-of-the-art methods in benchmark tests.

摘要

本文提出了一种全新的非均匀恢复(反卷积)模型,该模型基于贝叶斯框架,用于处理因空间不变模糊和加性高斯噪声而退化的观测图像。在该模型中,通过基于分割的先验项在迭代恢复过程中实现正则化。这种自适应保边正则化项对目标图像的预估计常值区域施加局部平滑约束。目标图像的这些常值区域(分割图)是从初步的维纳反卷积估计中获得的。为了估计可靠的分割图,我们还采用了贝叶斯马尔可夫框架,其中在最大后验(MAP)意义下估计正则化分割,并联合使用局部波茨先验和适当的高斯条件亮度分布。为了使这些分割无监督,这些似然分布在最大似然意义下进行估计。为了计算与恢复相关的MAP估计,我们使用简单的最速下降过程,得到一个有效的迭代过程,收敛到全局最优恢复。本文所报告的实验表明,在基准测试中,所讨论的方法具有竞争力,有时比现有的最佳先进方法表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验