Chen Xiang, Murphy Robert
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1632-5. doi: 10.1109/IEMBS.2004.1403494.
Knowledge of a protein's subcellular location is essential to a complete understanding of its functions. Automated interpretation methods for protein location patterns are needed for proteomics projects, and we have previously described systems for classifying the major subcellular patterns in cultured mammalian cells. We describe here the calculation of improved 3D Haralick texture features, which yielded a near-perfect classification accuracy when combined with 3D morphological and edge features. In particular, a set of 7 features achieved 98% overall accuracy for classifying 10 major subcellular location patterns in HeLa cells.
了解蛋白质的亚细胞定位对于全面理解其功能至关重要。蛋白质组学项目需要蛋白质定位模式的自动解释方法,我们之前已经描述了用于对培养的哺乳动物细胞中的主要亚细胞模式进行分类的系统。我们在此描述了改进的三维哈拉里克纹理特征的计算方法,当与三维形态学和边缘特征相结合时,该方法产生了近乎完美的分类准确率。特别是,一组7个特征在对HeLa细胞中的10种主要亚细胞定位模式进行分类时,总体准确率达到了98%。