Suppr超能文献

用于定位蛋白质组学的荧光显微镜图像中亚细胞模式的自动解读

Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics.

作者信息

Chen Xiang, Velliste Meel, Murphy Robert F

机构信息

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Cytometry A. 2006 Jul;69(7):631-40. doi: 10.1002/cyto.a.20280.

Abstract

Proteomics, the large scale identification and characterization of many or all proteins expressed in a given cell type, has become a major area of biological research. In addition to information on protein sequence, structure and expression levels, knowledge of a protein's subcellular location is essential to a complete understanding of its functions. Currently, subcellular location patterns are routinely determined by visual inspection of fluorescence microscope images. We review here research aimed at creating systems for automated, systematic determination of location. These employ numerical feature extraction from images, feature reduction to identify the most useful features, and various supervised learning (classification) and unsupervised learning (clustering) methods. These methods have been shown to perform significantly better than human interpretation of the same images. When coupled with technologies for tagging large numbers of proteins and high-throughput microscope systems, the computational methods reviewed here enable the new subfield of location proteomics. This subfield will make critical contributions in two related areas. First, it will provide structured, high-resolution information on location to enable Systems Biology efforts to simulate cell behavior from the gene level on up. Second, it will provide tools for Cytomics projects aimed at characterizing the behaviors of all cell types before, during, and after the onset of various diseases.

摘要

蛋白质组学是对特定细胞类型中表达的许多或所有蛋白质进行大规模鉴定和表征,已成为生物学研究的一个主要领域。除了蛋白质序列、结构和表达水平的信息外,了解蛋白质的亚细胞定位对于全面理解其功能至关重要。目前,亚细胞定位模式通常通过对荧光显微镜图像的目视检查来确定。我们在此回顾旨在创建自动、系统确定定位的系统的研究。这些系统采用从图像中提取数值特征、进行特征约简以识别最有用的特征,以及各种监督学习(分类)和无监督学习(聚类)方法。这些方法已被证明比人类对相同图像的解读表现得要好得多。当与标记大量蛋白质的技术和高通量显微镜系统相结合时,这里所回顾的计算方法促成了定位蛋白质组学这一新的子领域。该子领域将在两个相关领域做出重要贡献。首先,它将提供关于定位的结构化、高分辨率信息,以使系统生物学能够从基因层面开始模拟细胞行为。其次,它将为细胞组学项目提供工具,这些项目旨在表征各种疾病发作之前、期间和之后所有细胞类型的行为。

相似文献

3
Location proteomics: systematic determination of protein subcellular location.
Methods Mol Biol. 2009;500:313-32. doi: 10.1007/978-1-59745-525-1_11.
5
Automated interpretation of protein subcellular location patterns.
Int Rev Cytol. 2006;249:193-227. doi: 10.1016/S0074-7696(06)49004-5.
6
Automated, systematic determination of protein subcellular location using fluorescence microscopy.
Subcell Biochem. 2007;43:263-76. doi: 10.1007/978-1-4020-5943-8_12.
8
A framework for the automated analysis of subcellular patterns in human protein atlas images.
J Proteome Res. 2008 Jun;7(6):2300-8. doi: 10.1021/pr7007626. Epub 2008 Apr 25.
9
Object type recognition for automated analysis of protein subcellular location.
IEEE Trans Image Process. 2005 Sep;14(9):1351-9. doi: 10.1109/tip.2005.852456.
10
Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1632-5. doi: 10.1109/IEMBS.2004.1403494.

引用本文的文献

1
Unsupervised Hyperspectral Microscopic Image Segmentation Using Deep Embedded Clustering Algorithm.
Scanning. 2022 Jun 6;2022:1200860. doi: 10.1155/2022/1200860. eCollection 2022.
2
Fluorescence microscopy image classification of 2D HeLa cells based on the CapsNet neural network.
Med Biol Eng Comput. 2019 Jun;57(6):1187-1198. doi: 10.1007/s11517-018-01946-z. Epub 2019 Jan 28.
3
Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas.
PLoS One. 2012;7(11):e50514. doi: 10.1371/journal.pone.0050514. Epub 2012 Nov 30.
5
Computational analysis of high-throughput flow cytometry data.
Expert Opin Drug Discov. 2012 Aug;7(8):679-93. doi: 10.1517/17460441.2012.693475. Epub 2012 Jun 18.
6
CellOrganizer: Image-derived models of subcellular organization and protein distribution.
Methods Cell Biol. 2012;110:179-93. doi: 10.1016/B978-0-12-388403-9.00007-2.
7
The subcellular distribution of small molecules: from pharmacokinetics to synthetic biology.
Mol Pharm. 2011 Oct 3;8(5):1619-28. doi: 10.1021/mp200092v. Epub 2011 Aug 15.
8
Automated quantitative live cell fluorescence microscopy.
Cold Spring Harb Perspect Biol. 2010 Aug;2(8):a000455. doi: 10.1101/cshperspect.a000455. Epub 2010 Jun 30.
9
Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2944-9. doi: 10.1073/pnas.0912090107. Epub 2010 Feb 1.
10
Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening.
PLoS Comput Biol. 2009 Dec;5(12):e1000603. doi: 10.1371/journal.pcbi.1000603. Epub 2009 Dec 24.

本文引用的文献

1
Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1632-5. doi: 10.1109/IEMBS.2004.1403494.
2
Objective clustering of proteins based on subcellular location patterns.
J Biomed Biotechnol. 2005 Jun 30;2005(2):87-95. doi: 10.1155/JBB.2005.87.
3
Characterization of the TGN exit signal of the human mannose 6-phosphate uncovering enzyme.
J Cell Sci. 2005 Jul 1;118(Pt 13):2949-56. doi: 10.1242/jcs.02434.
4
Location proteomics: a systems approach to subcellular location.
Biochem Soc Trans. 2005 Jun;33(Pt 3):535-8. doi: 10.1042/BST0330535.
6
Systems biology and new technologies enable predictive and preventative medicine.
Science. 2004 Oct 22;306(5696):640-3. doi: 10.1126/science.1104635.
7
Potential and challenges of a human cytome project.
J Biol Regul Homeost Agents. 2004 Apr-Jun;18(2):87-91.
9
Automatic identification of subcellular phenotypes on human cell arrays.
Genome Res. 2004 Jun;14(6):1130-6. doi: 10.1101/gr.2383804.
10
The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61. doi: 10.1093/nar/gkh036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验