Suppr超能文献

心肌细胞中Ca2+调节与电交替:钙调蛋白依赖性蛋白激酶II及复极化电流的作用

Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.

作者信息

Livshitz Leonid M, Rudy Yoram

机构信息

Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Missouri 63130-4899, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2854-66. doi: 10.1152/ajpheart.01347.2006. Epub 2007 Feb 2.

Abstract

Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.

摘要

心脏复极交替与心律失常和猝死相关。在细胞水平上,交替现象涉及动作电位(AP)以及可能的Ca(2+)瞬变(CaT)逐搏振荡。由于在独立控制Ca(2+)和电系统方面存在实验困难,数学建模为机制和因果关系提供了更多见解。在犬心室肌细胞模型中进行了起搏方案,结果如下:1)CaT交替是由肌浆网Ca(2+)释放系统的不应性引起的;L型钙电流的交替影响可忽略不计;2)AP后期的CaT-AP偶联通过钠钙交换器发生,是AP持续时间(APD)交替的基础;3)Ca(2+)/钙调蛋白依赖性蛋白激酶II(CaMKII)活性增加将CaT和APD交替的范围扩展到更低频率,并增加交替幅度;其降低会抑制CaT和APD交替,发挥抗心律失常作用;4)快速延迟整流电流(I(Kr))增加也会抑制APD交替,但不会抑制CaT交替。因此,抑制CaMKII通过消除其原因(CaT交替)来消除APD交替,而增强I(Kr)则通过减弱CaT-APD偶联来实现。模拟结果表明,联合抑制CaMKII和增强I(Kr)可能是一种抗心律失常干预措施。

相似文献

1
Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2854-66. doi: 10.1152/ajpheart.01347.2006. Epub 2007 Feb 2.
2
Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model.
Circulation. 2004 Nov 16;110(20):3168-74. doi: 10.1161/01.CIR.0000147231.69595.D3. Epub 2004 Oct 25.
3
Molecular correlates of repolarization alternans in cardiac myocytes.
J Mol Cell Cardiol. 2005 Sep;39(3):419-28. doi: 10.1016/j.yjmcc.2005.06.004.
4
Action potential shortening rescues atrial calcium alternans.
J Physiol. 2019 Feb;597(3):723-740. doi: 10.1113/JP277188. Epub 2018 Dec 5.
5
The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
Circ Res. 2015 Feb 27;116(5):846-56. doi: 10.1161/CIRCRESAHA.116.305404. Epub 2014 Dec 22.
6
Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: implications for repolarization alternans.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2109-18. doi: 10.1152/ajpheart.00609.2007. Epub 2007 Jun 22.
8
β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis.
Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H338-H353. doi: 10.1152/ajpheart.00094.2017. Epub 2017 May 26.
9
Ca/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na current, Ca cycling, and excitability: a mathematical modeling study.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1227-H1239. doi: 10.1152/ajpheart.00185.2017. Epub 2017 Aug 25.
10
Balance Between Rapid Delayed Rectifier K Current and Late Na Current on Ventricular Repolarization: An Effective Antiarrhythmic Target?
Circ Arrhythm Electrophysiol. 2020 Apr;13(4):e008130. doi: 10.1161/CIRCEP.119.008130. Epub 2020 Mar 23.

引用本文的文献

1
The role of ephaptic coupling and gap junctional coupling in modulating the initiation and dynamics of reentrant arrhythmias.
PLoS One. 2025 Aug 19;20(8):e0330016. doi: 10.1371/journal.pone.0330016. eCollection 2025.
2
Inactivation of CaV1 and CaV2 channels.
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202313531. Epub 2025 Jan 30.
5
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
6
Prokaryotic voltage-gated sodium channels are more effective than endogenous Na1.5 channels in rescuing cardiac action potential conduction: an in silico study.
Am J Physiol Heart Circ Physiol. 2023 Nov 1;325(5):H1178-H1192. doi: 10.1152/ajpheart.00287.2023. Epub 2023 Sep 22.
8
Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges.
Biomolecules. 2022 Nov 14;12(11):1686. doi: 10.3390/biom12111686.
10
Models of the cardiac L-type calcium current: A quantitative review.
WIREs Mech Dis. 2023 Jan;15(1):e1581. doi: 10.1002/wsbm.1581. Epub 2022 Aug 26.

本文引用的文献

1
Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation.
Biophys J. 2007 Mar 1;92(5):1522-43. doi: 10.1529/biophysj.106.088807. Epub 2006 Dec 8.
2
Cellular alternans: a mechanism linking calcium cycling proteins to cardiac arrhythmogenesis.
Ann N Y Acad Sci. 2006 Oct;1080:216-34. doi: 10.1196/annals.1380.018.
3
Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents.
Circ Res. 2006 Nov 10;99(10):1092-9. doi: 10.1161/01.RES.0000249369.71709.5c. Epub 2006 Oct 12.
4
Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy.
Circulation. 2006 Sep 26;114(13):1352-9. doi: 10.1161/CIRCULATIONAHA.106.644583. Epub 2006 Sep 18.
5
Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations.
Circ Res. 2006 Sep 29;99(7):740-8. doi: 10.1161/01.RES.0000244002.88813.91. Epub 2006 Aug 31.
6
Spatially discordant alternans in cardiac tissue: role of calcium cycling.
Circ Res. 2006 Sep 1;99(5):520-7. doi: 10.1161/01.RES.0000240542.03986.e7. Epub 2006 Aug 10.
7
From pulsus to pulseless: the saga of cardiac alternans.
Circ Res. 2006 May 26;98(10):1244-53. doi: 10.1161/01.RES.0000224540.97431.f0.
8
Alternans and spiral breakup in a human ventricular tissue model.
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1088-100. doi: 10.1152/ajpheart.00109.2006. Epub 2006 Mar 24.
9
T-wave alternans and the susceptibility to ventricular arrhythmias.
J Am Coll Cardiol. 2006 Jan 17;47(2):269-81. doi: 10.1016/j.jacc.2005.08.066. Epub 2006 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验